CHELTENHAM
 BOROUGH COUNCIL

Notice of a meeting of Council

Monday, 24 September 2012

2.30 pm

Council Chamber, Municipal Offices

Membership		
Councillors:	Colin Hay (Chair), Wendy Flynn (Vice-Chair), Andrew Chard, Garth Barnes, Ian Bickerton, Nigel Britter, Chris Coleman, Barbara Driver, Bernard Fisher, Jacky Fletcher, Rob Garnham, Les Godwin, Penny Hall, Tim Harman, Rowena Hay, Diane Hibbert,	
	Sandra Holliday, Peter Jeffries, Steve Jordan, Andrew Lansley, Paul Massey, Helena McCloskey, Andrew McKinlay, Paul McLain, David Prince, John Rawson, Anne Regan, Rob Reid, Diggory Seacome, Duncan Smith, Malcolm Stennett, Charles Stewart, Klara Sudbury, Do Teakle, Pat Thornton, Jon Walklett, Andrew Wall, Simon Wheeler, Jo Teager Whyborn and Suzanne Williams Rog	

Agenda

1.	A MOMENT OF REFLECTION	
$\mathbf{2 .}$	APOLOGIES	
3.	DECLARATIONS OF INTEREST	(Pages $1-32)$
4.	MINUTES OF THE LAST MEETING 25 June 2012	
5.	COMMUNICATIONS BY THE MAYOR	
$\mathbf{6 .}$	COMMUNICATIONS BY THE LEADER OF THE COUNCIL	
7.	PUBLIC QUESTIONS These must be received no later than 12 noon on the fourth working day before the date of the meeting (18 September 2012)	
8.	MEMBER QUESTIONS	
9.	RECOMMENDATIONS OF THE INDEPENDENT REMUNERATION PANEL (IRP) REGARDING MEMBERS' SCHEME OF ALLOWANCES Report of the Director of Commissioning	(Pages $33-42)$

10.	JOINT CORE STRATEGY GLOUCESTER, CHELTENHAM AND TEWKESBURY - HOUSING NEEDS ASSESSMENT REPORT Report of the Leader	(Pages $43-$ $370)$
11.	NOTICES OF MOTION	
12.	TO RECEIVE PETITIONS	
13.	ANY OTHER ITEM THE MAYOR DETERMINES AS URGENT AND WHICH REQUIRES A DECISION	

Contact Officer: Saira Malin, Democracy Officer, 01242775153
Email: democratic.services@cheltenham.gov.uk

Andrew North Chief Executive

Page 1

Council

Monday, 25th June, 2012
2.30-6.35 pm

	Attendees
Councillors:	Colin Hay (Chair), Wendy Flynn (Vice-Chair), Andrew Chard, Garth Barnes, Ian Bickerton, Nigel Britter, Chris Coleman, Barbara Driver, Bernard Fisher, Rob Garnham, Penny Hall, Tim Harman, Rowena Hay, Sandra Holliday, Peter Jeffries, Steve Jordan, Andrew Lansley, Paul Massey, Helena McCloskey, Andrew McKinlay, Paul McLain, David Prince, John Rawson, Anne Regan, Rob Reid, Diggory Seacome, Duncan Smith, Malcolm Stennett, Charles Stewart, Klara Sudbury, Jo Teakle, Jon Walklett, Andrew Wall, Simon Wheeler, Roger Whyborn and Suzanne Williams

Minutes

1. A MOMENT OF REFLECTION

Reverend Robert Pestell invited members to take a moment of reflection.
At this point the Mayor presented Honorary Alderman Robin MacDonald with his scroll.
2. APOLOGIES

Councillors Fletcher, Godwin and Thornton had given their apologies and Councillor Wall had advised he would be late. He subsequently arrived at 3.10pm.

The Mayor went through some house-keeping. A signing in and out sheet had been situated at the entrance of the chamber and members were asked to note the time of their arrival, if after the meeting had commenced, and the time of their departure if prior to the conclusion of the meeting in order that there would be a clear indication of which members were present at various stages of the meeting. This was something that he would look to enforce if required. He also noted that to allow flexibility no seating plan had been produced and instead the Councillor poster featuring member's names and faces had been circulated throughout the public gallery and provided to the press, though he would endeavour to introduce members when inviting them to speak.
3. DECLARATIONS OF INTEREST

Councillor Regan declared a personal interest in agenda item 9 (Petition regarding Weavers Field) as a member of the Warden Hill Parish Council.

The Mayor highlighted that the budget outturn was today being considered and suggested that as there were issues relating to the HRA, should this be debated, Directors of CBH, of which he was one, should declare an interest.

Page 2

4. MINUTES OF THE LAST MEETING

The minutes of the last meeting had been circulated with the agenda.
Upon a vote it was unanimously
RESOLVED that the minutes of the meeting held on the 14 May 2012 be agreed and signed as an accurate record.

5. PUBLIC QUESTIONS

The public questions were taken just prior to agenda item 9 (Petition regarding Weavers Field) as all of the questions received related to this matter.

The following responses were given to the 8 public questions received;

1.	Question from Mr Poulter to Cabinet Member Sustainability, Councillor Whyborn				
	Can I ask please, why the proposed allotment project on Weaver's Field, Warden Hill is still being pursued, when even our own MP Martin Horwood has publicly stated his grave concerns and opposition to it, the two local Parish Councils, namely Leckhampton with Warden Hill, and Up Hatherley have rejected it.... the former being the authority responsible for the provision of allotments in our area, and the second being the Parish Council covering the area which the Member proposing this project represents ... and how does this fit in with the 'Localism Bill', because the provision of allotments in this location will restrict 'Public Use' of this beautiful green open space, in favour of a Minority?				
	Response from Cabinet Member Sustainability				
Localism involves listening to all the local people and groups, not just an allotment in order to grow their own produce, something which many people would want to encourage. The council also has a legal obligation to supply allotments. Councillors are continuing to listen, and certainly open to modifying the					
proposal in ways which improve the public amenity for enjoying the views					
from the hill, walking dogs and so on.		$	$	Supplementary question from Mr Poulter	
:---	:---				
When you say "Localism involves listening to all.." are you aware that as well as the 1020 that signed the petition there are hundreds of people in Leckhampton that are against the allotments compared to the 80 or so that would benefit from them?					
	Response from Cabinet Member Sustainability Ilook at it differently. There are hundreds of people on the waiting list for allotments and the fact is there are two groups of people saying two very different things and as a Cabinet Member I must look at both and the bigger picture of Cheltenham as a whole.				
$\mathbf{2 .}$	Question from Mrs John to Cabinet Member Sustainability, Councillor Whyborn				

Page 3

	Back in 2005 when the Council's website referred to the exciting future development in Weavers Field, a group of volunteers was formed, "Friends of Weavers Field', to try and protect the area. We fundraised and worked closely with John Crowther, the then Assistant Director- Green Environment and Mr. James Blockly, Borough Council Conservation Officer, to maintain this valuable space. Mr. Crowther promised to work closely with interested residents to protect and enhance the nature conservation value and bio-diversity of Weavers Field for the greater benefit of all. Can the Cabinet Member Sustainability advise what bio-diversity studies have been done with regards to the impact on protected species such as bats, slow worms etc which are regularly seen?
As the late Councillor Ken Buckland wrote as long ago as March 1997 in respect of Weaver's Field, 'these small pockets of green open space in our community are always worth fighting for'.	
Response from Cabinet Member Sustainability	
An ecological study has been completed which can be made available to all, and which demonstrates that no significant impact would be made by converting a part of the hill to allotments.	
On the general question of future usage of Weavers' Field following the transfer of the land to the Council, there were various discussions over the last decade in terms of how best to use it, which I am advised never really got beyond the general commitment not to build houses on it. In particular the possibility to create a nature reserve was not pursued because of insufficient public support, neither was the idea of a public recreation facility.	
Supplementary question from Mrs John	
	You talk about lack of public support for a nature reserve or public recreation facility but why can't the Council just leave it as the unspoiled haven that it is for people to enjoy?
Response from Cabinet Member Sustainability	
	The Council is in a difficult position. It's easy to say leave Weavers Field and use another site but the fact is that there are only a small number of sites and the Council has a statutory duty to provide allotments which it is looking to do within these constraints.
3.Question from Mr Smiles to Cabinet Member Sustainability, Quere have certainly been discussions with the Planning department, and no objections raised in principle. Weavers Field is formerly farmland. The	
Councillor Whyborn	

Page 4

	conservation officer reports that the field has no special historic features or special conservation legislation controlling its development.
	Supplementary question from Mr Smiles
	I assume there is a report which formally sets out the opinion of the Planning department and given the level of public objection why do you want to deprive so many people of this beautiful place.
	Response from Cabinet Member Sustainability
	Only a preliminary response has been provided by the Planning department at this stage, though this was in writing. A formal response would be sought as the result of any future Planning application and this would be available to the public. I have been impressed by the arguments put forward by the public on this matter and these will form part of my consideration of whether the scheme can be modified.
4.	Question from Mr Rastelli to Cabinet Member Sustainability, Councillor Whyborn
	Council members are being asked to make a decision about whether or not to take the Weaver's Field proposal forward. How many of the Council have actually visited this site and experienced exactly what it is?
	Response from Cabinet Member Sustainability
	Council members will not be making that decision in this meeting (25/06/12), and it would be most unusual for an entire Council to visit a site. However local ward members have visited it, including myself, and it is to be expected that before any application goes to the Planning Committee, their members would visit the site. Following my visits, I would add that the amenity value of the hill is not lost on me, and the Council would certainly want to take this into full account in discussions as to how and where to site allotments on Weavers Field.
	Supplementary question from Mr Rastelli
	Can you assure me that all members visit the site before any decision is taken?
	Response from Cabinet Member Sustainability
	I can't give that assurance or speak for other members, but I certainly hope they would.
5.	Question from Mr John to Cabinet Member Sustainability, Councillor Whyborn
	In the light of the overwhelming strength of local feeling in respect of the Weaver's Field, Warden Hill allotment proposal, has any consideration been given to a full debate being undertaken In the Council chamber over this matter?
	Response from Cabinet Member Sustainability
	Clearly Council members will have opportunities in the debate over the petition, and I am confident that will be conducted so as to represent the range of views. However, the constitution of the Council is such that the decision will not (and cannot) be taken by full Council. It is a decision for cabinet, and which would in turn require a full debate of the Planning committee in the Council chamber.
6.	Question from Mr John to Cabinet Member Sustainability, Councillor Whyborn
	Can the cabinet member confirm what consideration has been given to

Page 5

	the availability of farmland in a nearby location, which I understand has been offered by a farmer, to be sold or leased to the Council?
	Response from Cabinet Member Sustainability
	The Council is actively looking at land aross mainly the south of Cheltenham, including farmland, council owned land, and anything else which may become available, but in reality people are not eager to sell or lease land. CBC is not aware of any such offer from a farmer, but would be very willing to discuss such an offer if it was made.
	Supplementary question from Mr John
	Are you aware that Councillor Regan has details of such an offer?
	Response from Cabinet Member Sustainability
	No I was not aware but I would be happy to discuss this with her if this is the case.
7.	Question from Mr Jones to the Leader of the Council, Councillor Jordan
	As Friends of Weavers Field, we have had over 850 cumulative years of sworn statements that support formal designation of Weavers Field as a Village Green. Added to this overwhelming local demand, may we ask the Leader of Borough Council to also support the application and confirm this in writing with Gloucestershire County Council?
	Response from the Leader
I'm not sure what '850 cumulative years of sworn statements' means	
although hope it doesn't mean this has been an issue since 1162.	

Page 6

	Centre. The Brizen exhibition was well attended, by both the public and parish council members.
	Supplementary question from Mr Jones
	Are you aware that the information presented at the Brizen exhibition was incorrect and misleading?
	Response from Cabinet Member Sustainability
	I am not aware that the information presented at the Brizen exhibition was incorrect or misleading but I am aware of these claims and do not accept these assertions. The information presented was presented in good faith.

6. COMMUNICATIONS BY THE MAYOR

The Mayors first few weeks in office had been very busy and had included the unveiling of a plaque for Lillian Faithful which had provided him with an insight into a great legacy. The Torch Relay event at the racecourse had demonstrated Cheltenham's ability to organise and execute events so well. The crowd at the racecourse grew to a magnificent number which was replicated along the route throughout Cheltenham. He thanked everyone that had been involved for a great job and noted that officials commented that the Cheltenham event had been the best so far. The Mayor had been honoured to go to Wembley Stadium to support the Cheltenham Robins in the football play-offs, though unfortunately they hadn't won the match. Other events included the Mayor's Charity launch at Oakwood School and he urged anyone that had not yet visited the Civic Award winning School to do so as it was a truly impressive building. The residents of Rosehill Street had shown real tenacity by going ahead with their Jubilee event as planned despite the 3 missing properties, the result of a gas explosion and he had been impressed by the coming together of trading and social communities across Cheltenham in celebration of the Jubilee. He had attended an ARRC beating of the retreat event at Imjin Barracks and been involved in some Royal visits. He hoped that members would be able to join him on some of the events throughout the year, including those in support of his charities.

7. COMMUNICATIONS BY THE LEADER OF THE COUNCIL

The Leader of the Council reminded members that the deadline for applications to the Promoting Cheltenham Fund was this coming Friday (29 June), so there was still time to apply for funding. Members were also invited to propose any essential environmental improvement schemes for which the deadline was the end of July.

He advised members that the July Council meeting, which was marked in the diary as 'if required' was in fact required and he hoped members would be available to attend.

Finally, he congratulated Councillor Massey on the birth of his second daughter and was pleased to report that mother and baby were doing well.

8. MEMBER QUESTIONS

The Leader apologised for the delay in circulation of the member questions and responses, explaining that factual information for one of the responses had not been received until just prior to the meeting. The Mayor suggested that in future the questions and responses should be circulated and any missings be provided verbally at the meeting.

Page 7

The following responses were given to the 6 member questions received;

1.	Question from Councillor Garnham to Cabinet Member Corporate Services
	Would the relevant Cabinet member please explain why public requests for information from the Council are denied but then an explanation given that if the public want information then it can be released through a Freedom of Information request? This has happened recently when the public have been denied the information regarding exactly how many people wrote in objecting to Cllr Whyborn's proposals for Weavers Field, and also when the projected cost of the ill thought out project were asked for. Would the relevant Cabinet Member explain how much money is spent on complying with a FOI request? Would the relevant Cabinet Member agree with me that it would be far better to give information freely (apart from confidential matters) rather than make everyone go through the FOI route with all the hassle and cost to the public that is involved.
	Response from Cabinet Member Corporate Services, Councillor Walklett
	Most requests for information received by the council are responded to by the service area as 'business as usual' and do not need to be considered a Freedom of Information Request. The council continues to try to publish as much information as possible on its website to assist the public and also to reduce the resources required to respond to Freedom of Information Requests. Last year the council responded to 520 Freedom of Information Requests. Although numbers of Freedom of Information Requests have been steadily increasing over the last five years $(2006 / 7=139)$ at an average of c.30\% per annum, the incremental Freedom of Information Requests mirror the experiences of other local councils and both the NHS and Police. There are occasions where members of the public and councillors seek the same information, as highlighed by Councillor Garnham. In such cases, out of courtesy, consideration is given to councillors regarding the timing of when information is publicised. I, as I am sure would all my councillor colleagues, would encourage officers to release information, wherever possible in such instances, to the public and councillors at the same time and certainly without lengthy delays. Freedom of Information requests vary in length and complexity and as a result can take from 5 minutes to several days of officer time to produce a response, with each response involving different officers with different pay grades. The council tries to minimise the resource required to response to requests. In the present case, the request for information was made by telephone. A written request would have been recorded as a Freedom of Information request, and a written response provided. Although the time and cost of providing a written response to a written

Page 8

	request would have been a little more than providing the same information by telephone, it would have resulted in a record which would have been easily available to those who may need to access it in the future, and circulated to Members who may have an interest in the request and response.
	Supplementary question from Councillor Garnham
	Does the Cabinet Member Corporate Services agree that it was wrong for the public to have to go down the route of a Freedom of Information Request?
	Response from the Cabinet Member Corporate Services
	I am confident that there are no attempts to push members of the public to make Freedom of Information Requests. It's worth noting that the standard level of complaints has remained the same which would suggest that Freedom of Information Requests are not being used to avert complaints.
2.	Question from Councillor Garnham to Cabinet Member Sustainability
	Would the relevant Cabinet Member please tell Council how many unused brown bins, for garden refuse, are currently in the Council's possession, and their value? Further to this can Council be told the total cost of all the brown bins purchased in the last five years? Could the Cabinet Member also confirm there are no plans to sell off these bins to other councils at a price less than what they were purchased for i.e. can it be confirmed the Council is not facing a loss over the purchase of unused brown bins?
	Response from Cabinet Member Sustainability, Councillor Whyborn
	The Council had to calculate approximately the number of residents that might take up the brown bin garden waste service and placed an order accordingly. We built in additional numbers for damaged, broken or stolen bins as it takes a minimum of 12 weeks to order new bins. There are greater discounts for large orders and the availability of storage capacity at the Swindon Road Depot meant it was more feasible to have bins in storage rather than risking running out of bins. There are 10,850 brown bins in stock at a value of $£ 167,632.50$ which remain a Council capital asset and therefore do not represent any form of financial loss. The Council has just sold 1,000 bins at 'cost' to Tewkesbury BC which enabled them to not have to wait up to 12 weeks for delivery and it is anticipated that this arrangement could be repeated with other local authorities over the coming months. We currently have 11,883 subscriptions for garden waste bins. Total of 23,800 brown bins purchased in the last 5 years at a cost of £367,710 Officers are managing the bin stocks in the most cost effective way, and bin transfers (rather than sales) within the Gloucestershire Waste Partnership are done at cost and that this is something Cheltenham has

Page 9

	benefited from in the past.
	Supplementary question from Councillor Garnham
	Cabinet are looking at the budget and considering how to allocate the £149k underspend but how much time are they spending debating the money that is tied up in these brown bins?
	Response from Cabinet Member Sustainability
	This matter is a concern to Cabinet but we are where we are and I feel I have already provided a comprehensive explanation of the issue.
3.	Question from Councillors Driver and Seacome to Cabinet Member Sustainability
	The recent wet weather has highlighted even more the problem of blocked road gullies and drains, particularly in Lansdown Ward. Whilst it is the responsibility of the County Council to clear the drains themselves it is the responsibility of the Borough Council to ensure there is not excessive mud and kerbside vegetation is left on the paths and in the gullies for such long extended time, which is all being washed into these drains and blocking them. This is causing a problem of flooded streets and footpaths very quickly and often. At some junctions the problem has nearly caused an accident with cars aquaplaning. Given the failure of the current cleansing system would the Cabinet Member explain to Council how he will ensure that there is an effective street cleansing programme in place to stop the problem of blocked drains every time it rains?
	Response from Cabinet Member Sustainability, Councillor Whyborn
	Scheduled mechanical sweeping is conducted across Cheltenham year round and assessments are also carried out by officers three times a year to assess levels of litter and detritus. CBC proactively organise mechanical sweeping and litter picking of areas which are graded as being below standard and whilst one cannot guarantee 'to stop the problem of blocked drains every time it rains in the Lansdown Ward' an inspection will be organised to determine the extent of the problem, and to assess whether or not there are any extenuating circumstances which need to be reported to Gloucestershire Highways.
	Supplementary question from Councillor Driver
	This doesn't really answer my question as I am asking for over and above; would you consider Sunday street cleaning?
	Response from Cabinet Member Sustainability
	I can't see any relevance to your original question of gulleys. I am however, happy to sit down with members and officers and discuss the matter further.
4.	Question from Councillor Driver to Cabinet Member Built Environment
	Would the Cabinet Member responsible for parking enforcement please look into placing more enforcement officers out in the streets outside the centre of town. In Lansdown we have the commuter parking both for those working in the town and in the area of the train station for other commuters. May times there is parking on corners, double yellow lines, encroaching the resident drives and turning circles. The parking the

Page 11

	This doesn't answer my question as I am not referring to pay \& display areas my question relates to areas of private parking, can't we have more enforcement officers in private streets?
	Response from Cabinet Member Built Environment As I have tried to explain in my previous answer there is a fundamental problem at the moment in that there has been a change of focus as GCC are increasingly moving to pay \& display. GCC are also bringing to an end the Agency agreement and as such CBC will not be filling current staff vacancies. The fact is that resources are declining, with enforcement officers currently spending 80\% of their time in the town centre and only 20\% in outlying areas, but I am happy to look at what officers do and see if it can be more efficient.
5.	Question from Councillor Bickerton to the Leader, Councillor Jordan
Can the Leader please provide some summary feedback on the vital JCS public consultation which completed in February, we need to know exactly what Cheltenham residents consider to be important in our strategy to 2031. For example the balance between environment and economic growth, provision for homes to support the town's demographics and inwards migration, the scenario given support and any concern over the preferred option as presented in our draft JCS.	
Response from the Leader	
The detailed consultation responses are available on the JCS website. Summaries of the responses are currently being finalised by the JCS team and will be published next week. A response to the representations will be published in due course. I have asked that access to these documents is made as easy as possible.	
While l'm pleased that over 3000 consultation responses were received, members will appreciate that dealing with these represents a considerable demand on stretched resources and takes time to complete. I can nevertheless report that some of the headline issues for Cheltenham include: - Leckhampton is by far the most commented-upon area in respect of the impact of potential development in a range of contexts including Green Belt and natural environment;	
- "Scenario A" has met with a degree of support - although often	
qualified support - from a considerable number of respondents;	
the evidence base and methodology for ascertaining levels of new	
housing is challenged by many;	
concerns about the impact of new development on existing	
infrastructure - such as highways and education - are frequently	
raised.	

	As Councillor Chard will know anyone can put in a planning application at any time so it is not possible to ensure that Leckhampton green fields, or indeed anywhere else, are not subject to an application for housing development. Once an application is received the Council is obliged to consider it in accordance with national and local planning policy and other material considerations. Bearing this is mind my first level of activity relates to the National Planning Policy Framework (NPPF) which sets the context for any local plan. While my response to the consultation on the NPPF was submitted over 6 months ago I continued to work with Martin Horwood, MP for Cheltenham, and others in lobbying government to amend the draft NPPF so that there is more local discretion to protect sites based on environmental issues. While this has met with some success in the final document, the degree will become clearer as the document is interpreted by the Planning Inspectorate. The second level of activity was to encourage people to respond to the 'developing the preferred option' document. This included radio and newspaper interviews and delivering leaflets. I am pleased that there were over 3000 responses to the document as this will help in developing a local plan that takes account of the views of local people. In addition I have continued to chair the Members Steering Group of the Joint Core Strategy with the aim of achieving a Joint Core Strategy that all 3 councils feel they can sign up to. If we don't manage to agree a sound local plan across the JCS area this will reduce the chance of protecting areas like Leckhampton from future development.

9. PETITION REGARDING WEAVERS FIELD

Agenda item 5 (public questions) was taken just prior to this item as all the questions that had been received related to this matter.

The Mayor referred members to the process for dealing with petitions at Council which had been circulated with the agenda. He invited Mr Rastelli, as petition organiser, to present the petition;
"We the undersigned are very much against the current preliminary proposal which would see up to 88 allotments on part of Weavers Field. The Council say that only 3.1 acres of the 8.1 acre field would be turned into allotments however this does not take into account the creation of a large car park area in

Page 13

order to cope with a significant number of vehicles. This area is the only open green space in this locality and the preliminary proposal is not acceptable".

Mr Rastelli outlined the scale of objection to the proposal and why. He explained that Weavers Field was a space frequented by hundreds of people each week and highly valued by those that used it for walking, playing and socialising. The field and hill were also popular with those with an interest in birds and wildlife as it supported a number of wild birds and a variety of other wild life including bats and slow worms. The proposals would prevent access for the general public to the majority of the field, serving only a comparatively small minority and prevent access for the vast majority.

Leckhampton with Warden Hill Parish Council whose responsibility it was to provide allotments in this area had expressed, in writing, their wish that this area remain a public amenity. The neighbouring Parish Council, Up Hatherley, had also put in writing this same message.

The Friends of Weaver's Field had applied to have this space recognised as a Village Green and were urging the Cabinet Member Sustainability to listen to the people of Warden Hill and withdraw the proposal.

The full statement given by Mr Rastelli is attached at Appendix 1.
The Mayor invited questions from members regarding the background report produced by officers.

As a point of clarification, Councillor Stennett queried the position of Planning Committee members making statements on this issue given that they may have to consider a future planning application. The Monitoring Officer reassured Planning Committee members that this was not a prejudicial matter and involvement in the debate would not prejudice them against any future planning application, though any such application should be approached with an open mind.

A number of members requested that the figures relating to the cost of the proposal be made available, questioning the logic behind undertaking consultation on a proposal that hadn't been properly costed. When members were told that these figures were not available, Councillor Smith moved a procedural motion calling for a 15 minute adjournment of the meeting in order that these figures could be provided. This motion was lost (Voting: (FOR) 12, (AGAINST) 18).

The Cabinet Member Sustainability explained that the decision had been taken to consult on the initial proposals before putting costs together, the plans had not been expensive to produce and officers were confident that the proposal would be deliverable given that there was no cost associated with purchasing the land. $£ 500 \mathrm{k}$ had been set aside from the sale of the Midwinter site, though a full costing would be compiled and assessed before anything was taken forward. Whilst he was unable to present any outline figures these were available and he was happy to make them available to members on another day.

Page 14

A member commented on the suggestion that the council had put forward the proposal for Weavers Field in response to a statutory duty to provide allotments and highlighted Paragraph 9 sub-paragraph (1) of Schedule 29 of the Local Government Act 1972 which states "If there is a Town or Parish Council in a particular area, then the responsibility for allotments within the boundaries of that town or parish lies with them. The District Council, in this case, has no powers to act in any manner over allotments". In view of this, any allotments on Weavers Field would in fact be private allotments rather than statutory as was the implication and the question was posed would they count toward the statutory obligations for allotment provision.

The Cabinet Member Sustainability responded by acknowledging that the location of Weavers Field was within a Parish Council but elaborating that because of its location it would draw in people from neighbouring wards including Up Hatherley and would therefore significantly contribute to the council's obligations for allotments.

The Mayor invited the Cabinet Member Sustainability as the Cabinet Member whose portfolio was most relevant to the petition, to speak on the subject of the petition.

The Cabinet Member Sustainability firstly thanked Mr Rastelli for his articulation of the concerns of the petitioners and officers for their work today, including the background report circulated with the agenda.

As Cabinet Member he had to consider not only the demands of people on the waiting lists for allotments but also the concerns raised by the general public who feared that a much loved public amenity would be lost. The Council had a statutory duty to satisfy demands for allotments and the majority of these were needed in the South of Cheltenham, where land was scarce. Attempts were being made to negotiate sites in the Leckhampton area and where very little council owned land existed in this area, other options were being explored, including the purchase and/or long term lease of land, which was made difficult by the fact that land owners tended to want to hold on to land in this area or offer very short leases in the hope that it would become valuable for housing. Some of the alternative options were not considered particularly attractive or cost-effective for the taxpayers of Cheltenham.

He felt it would be easy for him to simply withdraw the proposal given the level of objection but considered that this would be unfair for the people who have been on the allotment waiting list for some years and could in fact provoke a legal challenge. He noted the petitioners words and suggested that as it were the case that the preliminary proposal was not acceptable he proposed to sit down with Mrs Rastelli, representatives of the petitioners and/or ward members and discuss compromise schemes which would address some of the concerns whilst still delivering a number of allotments.

It was important to note that the decision on how to assess the objections received was a decision for Cabinet, in addition to which there would be a requirement to table any proposal with the Planning Committee.

He proposed the following resolution;

Page 15

1) That the Cabinet Member and officers seek a discussion with representatives of the petitioners and with ward councillor with a view to improving amenity value of the scheme and that;
2) Revised proposals are brought to Cabinet which take this into account.

The Cabinet Members full statement is attached at Appendix 2.
The Leader of the Councillor confirmed that he would second the proposal put forward by the Cabinet Member Sustainability.

Councillor Regan thanked the Cabinet Member Corporate Services for his offer to discuss the issue with representatives of the petitioners, suggesting that she would represent those that had signed the petition and many more.

A number of members urged the Cabinet Member Sustainability to recognise the value of Weavers Field as a habitat and a space enjoyed by many for a variety of reasons. The invitation for further discussion with the representatives of the petitioners and ward members was welcomed but these members felt that given the overwhelming opposition to these proposals from Parish Councils, over 1000 residents who signed the petition, Borough Councillors and the local MP, they should be withdrawn and alternative sites considered. These members acknowledged that the allotment issue was an immotive one and questioned why supporters of the proposal were not present at the meeting. Some of these members voiced their concerns that the Cabinet Member Sustainability would take forward these proposals regardless and was closed to any alternatives.

Councillor Prince left the meeting at 3.35 pm .
In response to concerns raised by members regarding the lack of legal and financial implications within the report produced by Officers, the Mayor explained that this was simply a background report in relation to the petition rather than a report as part of any decision relating to the Weavers Field proposal. Such a report would include full implications when it was considered by Cabinet.

As seconder, the Leader could not support calls for the Weavers Field proposal to be withdrawn completely at this stage. Consultation on the initial proposal had been undertaken but there was more detail still to be worked through, which included any costings. He emphasized the difficultly that faced the council, allotments had to be situated somewhere, though this did not at all invalidate the concerns that had been raised in the petition or through the course of the debate today.

In closing, the Cabinet Member Sustainability admitted that the threat of legal challenge had always been there and that the weight placed on this would be decided at a later date. He assured members that at this stage nothing had been ruled out but that a determining factor would be the availability of other suitable sites. He was interested to hear about alternative sites and invited people to share with him the details of other sites along with details of who owned the land so that they could be considered further. He gave assurances
that if a suitable site was identified he would have no qualms about withdrawing the Weavers Field proposal.

Councillor Harman demanded a recorded vote and six other members were in support.

Upon a vote it was

RESOLVED that:-

1. the Cabinet Member and Officers seek a discussion with representatives of the petitioners and with ward councillors with a view to improving amenity value of the scheme;
2. Revised proposals are brought to Cabinet which take this into account.

Voting:
(FOR: 23) Councillors Barnes, Britter, Coleman, Fisher, Flynn, C. Hay, R. Hay, Holliday, Jeffries, Jordan, Lansley, Massey, McCloskey, McKinlay, Rawson, Reid, Stewart, Sudbury, Teakle, Walklett, Wheeler, Whyborn and Williams
(AGAINST: 12) Councillors Bickerton, Chard, Driver, Garnham, Hall, Harman, McLain, Regan, Seacome, Smith, Stennett and Wall

The meeting was adjourned at 4.15 pm for tea.

10. COMMISSIONING PROTOCOL

The meeting resumed at 4.35 pm. Councillors Coleman, Holliday and Williams were no longer in attendance.

The Cabinet Member Corporate Services introduced the commissioning protocol which set out the principles and practices introduced by the Council as part of the strategic commissioning approach that had been adopted in December 2010. The short protocol described how commissioning would be approached and monitored. He felt the content of the report was self explanatory and invited members to accept the recommendations.

A number of members raised concerns about the draft protocol that was being presented for approval. Concerns included the way in which the council was approaching commissioning. Some members felt that this was not being undertaken in a cohesive manner and the way in which priorities were established and decisions made did not demonstrate a consistent approach.

The principal concern of these members was that of accountability. They considered it nonsensical for officers of Cheltenham Borough Council to respond to concerns or complaints from the public advising them that their concern/complaint would be dealt with by a third party (e.g. UBICO). This also raised the issue of ward member's ability to resolve issues. Ultimately members felt that the Lead Cabinet Member should be accountable to scrutiny and were this reflected in the protocol they would feel able to support the recommendations. Whilst supportive of the principal of keeping costs down, the

Page 17

worry was that the approach would compromise the council's ability to deliver the quality of service expected by the public.

Members speaking in support of the recommendations did so as in their view there was no question of the Lead Cabinet Member abdicating their responsibilities or accountability. They considered that in some circumstance,s UBICO for example, would be better placed to respond to a query or complaint than officers within the Commissioning Division, though admitted that this was a practical issue that should be monitored and Overview and Scrutiny would be crucial in this process. The formation of any shared service, Local Authority Company, etc, would not be a conclusion but rather a beginning.

The Cabinet Member Corporate Services was comfortable that his regular attendance at Overview and Scrutiny meetings would provide a degree of accountability and as part of the Joint Management Liaison Group he would maintain an overview of commissioning. It was his aim to communicate the ongoing gains of commissioning and assured members that seminars, of which there had already been 7 or 8 , would continue to be organised to ensure members were informed, engaged and able to raise any concerns.

The Cabinet Member Corporate Services agreed that the roles and responsibilities of the Lead Cabinet Member as set out on page 4 of the protocol would be amended to state 'is accountable to scrutiny' in place of 'updates scrutiny'.

Upon a vote it was CARRIED with 1 abstention and 1 against.

RESOLVED that;

1. The commissioning protocol as amended be endorsed by Council;
2. Monitoring and review of the commissioning protocol be delegated to the Overview and Scrutiny Committee.

11. FINANCIAL OUTTURN 2011/12 AND QUARTERLY BUDGET MONITORING TO MAY 2012
 Councillor Teakle left the meeting at 5 pm .

The Cabinet Member Finance introduced the report and referred members to the amended appendix 11 that had been circulated at the meeting. The report highlighted the Council's financial performance for the previous year which set out the General Fund and Housing Revenue Account revenue and capital outturn position for 2011/12. The information contained in the report had been used to prepare the Council's Statement of Accounts for 2011/12.

The Cabinet member was pleased to report that during the year, the potential in year budget deficit had been addressed and as a result a revised balancedbudget had been achieved. The council's success in achieving this was down to the hard work by officers across the council in reducing costs and boosting incomes. He outlined the intentions for making use of the revenue budget savings are set out in section 3 of the report and the budget carry forward requests in section 4 . He referred members to an error in appendix 7 where the
carry forward bid for democratic services of $£ 7,000$ should have referred to $£ 5,000$ for the support and rollout of ICT remote access facilities for members and $£ 2000$ to support the new scrutiny arrangements.

He highlighted the favourable outcome regarding the Icelandic Banks and the potential uses of the High Street Innovation Fund grant where Cheltenham had been awarded $£ 100,000$ of the $£ 10$ million allocated by Government to help revive high street retail. He concluded that overall the report represented a sound piece of work which made sensible use of the council's resources.

In response to questions from members, the Cabinet member gave the following responses:

- He confirmed that businesses had been consulted on the potential uses of the High Street Innovation Fund and a number of their suggestions had been picked up.
- In response to a suggestion that the reinstatement of a planning appeals officer would be preferable to boosting the planning appeals reserve, he said in his view these two issues were not connected.
- Asked how the funding of business rate discounts would be "targeted at the areas where it can have the greatest impact", he explained that currently there was a focus on the town centre. However it would be necessary to strike a balance between targeting sufficient funds in an area to make a difference and identifying areas of greatest need across the borough.
- A member had suggested that the proposed $£ 9,000$ cost for installation of cameras to measure footfall in different parts of the town centre should be supported by big retailers and the money would be better spent on the business rate relief scheme. In response the Cabinet Member said that businesses in the town centre spent a large amount of money on marketing and this scheme was a sensible way to help them target their resources more appropriately. Major businesses would be making a contribution and the Cheltenham Development Task Force would also be involved in reviewing the results.
- Asked whether the Council could encourage more young people to attend events in the town by refunding their bus fares, he noted the point but the Council did have a limited budget and had already allocated $£ 50,000$ to support youth provision in the town and offered facilities at leisure@.
- The additional funding for grass verge cutting had been allocated to make up for the shortfall in County Council funding in 2012/13. If this shortfall continued then the council may have to look at building additional funds into the revenue budget in future years.
- He referred the question about where the funding from the sale of Midwinter appeared in the budget papers to the Director of Resources who advised that it did not appear because the report was an analysis of the outturn of the revenue budgets or capital schemes for the year 2011/12.
- He confirmed that tackling homelessness was a high priority for the council despite the underspend in the previous. The homelessness strategy had highlighted the complex needs of homeless people and the carry forward bid would allow this important work to continue.

Page 19

- He would provide a written response to members on the areas where the alcohol grant referred to in appendix 7 would be applied.
- He would discuss with officers the question of whether it was sensible to continue reducing staff development budgets when staff needed to develop new skills sets to work effectively in the new commissioning environment.

Upon a vote it was (unanimously)
RESOLVED that the following recommendations be approved;

1. Receive the financial outturn performance position for the General Fund, summarised at Appendix 2, and note that services have been delivered within the revised budget for 2011/12 resulting in a saving (after carry forward requests) of $£ 149,777$.
2. Recommend that Council approve the following:
$2.1 £ 214,700$ of carry forward requests as amended (requiring member approval)at Appendix 7
2.2 The budget saving of $£ 149,777$ be used as follows:

- $£ 43,600$ to fund a grant to CHAC as outlined in para 3.3
- $£ 43,900$ for providing recycling boxes and bins as outlined in para 3.6
- £62,277 to strengthen the Planning Appeals reserve as outlined in para 3.7

3. Note the treasury management outturn at Appendix 9.
4. Approve the allocation of the High Street Innovation Fund award grant as set out in section 6.
5. Note the capital programme outturn position as detailed in Appendix 11 and approve the carry forward of unspent budgets into 2012/13 (section 8).
6. Note the position in respect of section 106 agreements and partnership funding agreements at Appendix 12 (section 9).
7. Note the outturn position in respect of collection rates for council tax and non domestic rates for 2011/12 in Appendix 13 (section 10).
8. Note the outturn position in respect of collection rates for sundry debts for 2011/12 in Appendix 14 (section 11).
9. Receive the financial outturn performance position for the Housing Revenue Account for 2011/12 in Appendices 15 to 17 (section 12).
10. Note the outturn prudential indicators Appendix 18 and recommend

that Council approve the revised prudential indicators for 2011/12, marked with an asterisk (section 13).

11. Note the budget monitoring position to the end of May 2012
(section 14). (section 14).

12. REVIEW OF THE COUNCIL'S PERFORMANCE 2011-12

The Cabinet Member Corporate Services introduced the report which summarised how the council had performed in 2011/12 in regard to the published milestones, performance indicators and outcomes set out in the 2011/12 corporate strategy action plan. The results set out in the report highlighted a good record of achievement particularly given the current difficult circumstances. 93% of milestones had been completed at the end of the year and 83% of targets for performance indicators had been met. The report also recognised the important contribution of Cheltenham Borough Homes in helping the council to meet its targets.

In response to a question he read out the figures of the costs of planning appeals which had been circulated to members of the Overview and Scrutiny Committee following their review of this report at their May meeting. These figures demonstrated that there was a downward trend in the number of planning appeals which had reduced by 2% over the last four years.

Referring to the outcome of a clean and well maintained environment, a member added a note of caution about the focus on waste as members of the public were starting to identify problems with litter and the situation could easily tip the other way. Another member suggested that there should be more information on proposed actions for addressing any areas which had not gone well and gave the reduced numbers at the Tourist Information Centre as an example. In response the Cabinet Member said that visitor numbers to the Centre had increased and $£ 25,000$ had been allocated to incorporate the centre into the Art Gallery and Museum when it opened in 2013.

Upon a vote it was unanimously

RESOLVED that the performance review 2011-12 be approved.

13. NEW CONDUCT REGIME

The Cabinet Member Corporate Services introduced the report which set out the proposed arrangements for adoption by the Council in order to comply with the new conduct regime set out in the Localism Act 2011 and the recently approved Regulations. He apologised for the late circulation of the report but the regulations had not been published until 8 June 2012 and therefore officers had been under particular pressure to produce the report in the required timescales. He highlighted the new obligation to disclose the pecuniary interests of spouses and partners as part of a Member's Register of Interest declaration. Members were also asked to approve a new Code of Conduct.

Councillor McLain indicated his intention to abstain from any vote as although he had supported the original intention of the Standards regime, he was not happy with how it had turned out. He advised that following a detailed briefing by their Monitoring Officer, the Members at the County Council had achieved cross-party consensus in support of a common approach across all seven local

Page 21

authorities and a common code to include parish councils in Gloucestershire. They would be looking for proposals to come back in the Autumn. Hence he considered that this report was a good piece of work but was premature.

A member asked whether a wife or spouse have the right to refuse to have their interest disclosed and did they have any rights to privacy under the Human Rights Act. The Borough Solicitor acknowledged that this part of the legislation had come as a surprise and that parish councillors had already expressed some concerns. Members could have a defence if they had no knowledge of their spouse's pecuniary interests but otherwise the obligation was on the Member to make the disclosure and not the spouse. If they failed to do this they could be liable to criminal proceedings. She emphasised that these were statutory rules and the council could not decide to amend them. She assumed that the rights of spouses would have been taken into account during the construction of the legislation.

It was noted that Step 1 in appendix 3 should refer to $C B C$ and not TBC.
The Leader referred members to recommendation 8 in the report regarding the appointment of Independent Persons. He advised that an Interview Panel consisting of himself, Councillor Garnham and Councillor Godwin, had interviewed three candidates on 20 June 2012. The panel was unanimous in its recommendation to the Council to appoint Mr Duncan Chittenden and Mr Martin Jauch as Independent Persons for Cheltenham Borough Council.

Before the vote, the Mayor highlighted to Members that the regulations came into force on 1 July and therefore the council was obliged to put arrangements in place in accordance with these regulations. He also reminded Members that the Borough Solicitor had been on hand before the Council meeting to answer any questions members had about the proposals.

Upon the vote the recommendations (excluding 9) were CARRIED with 3 abstentions.
Upon a separate vote on recommendation 9, this was CARRIED.
Voting For: 28, Against:O, Abstain: 1

RESOLVED:

1. That the draft Code of Members' Conduct, attached at Appendix 2, be APPROVED and ADOPTED with effect from $1^{\text {st }}$ July 2012.
2. That the Cheltenham Borough Council Register of Interests comprises those Disclosable Pecuniary Interests and other interests as set out in Appendices A and B of the Code of Members' Conduct at Appendix 2.
3. That the Council's Constitution be amended to include within the Council, Cabinet Committee and Sub-Committee Rules of Procedure the following:
4. 'A Member must withdraw from a meeting (including from the public area/gallery) during the whole of the consideration of any item of business in which the Member has a Disclosable Pecuniary Interest, or in which the Member has an "other" interest where, as a
consequence of Paragraph 10(4) of the Council's Code of Conduct, the Member is required to leave the meeting and not participate or vote on the matter, unless the Member is permitted to remain through the granting of a dispensation.'
5. That the arrangements for dealing with complaints, as set out in Paragraph 3 of this report are ADOPTED, together with the flowchart and assessment criteria set out at Appendix 3.
6. To establish a Standards Committee, including a Hearings SubCommittee, as set out in Paragraphs 3.13-3.17 of this report, together with the Terms of Reference set out at Appendix 4 to be incorporated within Part 3C of the Council's Constitution.
7. That Councillors Barnes, Fisher, Flynn, Godwin and Wheeler and two Conservative members to be advised be appointed to be members of the Standards Committee in accordance with the political balance requirements (4:2:1).
8. To ask the Independent Remuneration Panel to review the Council's Scheme of Allowances consequent upon the changes to the Standards Committee.
9. That Mr Duncan Chittenden and Mr Martin Jauch as Independent Persons for Cheltenham Borough Council be appointed in accordance with the recommendation of the Interview Panel.
10. That Part 3D (Responsibilities for Functions - Officer NonExecutive Functions) of the Council's Constitution be amended to appoint the Borough Solicitor and Monitoring Officer to be the Proper Officer to receive complaints in writing regarding allegations of failure to comply with the Code of Conduct and that authority is delegated to the Monitoring Officer as follows:
i. to determine, after consultation with the Independent Person(s), whether a complaint should be investigated and to arrange such investigation;
ii. to seek local resolution of complaints without formal investigation where it is possible to do so;
iii. to close a complaint if the investigation finds no evidence of failure to comply with the Code of Conduct;
iv. to agree a local resolution where an investigation finds evidence of a failure to comply with the Code of Conduct, subject to consultation with the Independent Person(s) and the complainant being satisfied with the proposed resolution;
v. to grant dispensations in accordance with Paragraphs 2.10 and 2.11 of this report;
vi. to make any other minor consequential changes to the Council's Constitution as the result of the adoption of the arrangements set out in this report.

The Cabinet Member proposed that Council record a vote of thanks to the current members of the Standards Committee which would be ceasing on the 30th of June 2012. The independent members were Jon Leamon, John Cripps,

Page 23

David O'Connor, Duncan Chittenden and the chairman Simon Lainé and Parish Councillors were David Iliffe and Gloria Coleman.
14. APPOINTMENTS TO OUTSIDE BODIES

The Leader referred to the covering note which had been circulated with the additional agenda papers for this meeting. Following agreement by the Group Leaders, Cabinet approved the majority of appointments to the outside bodies at their meeting on 19 June 2012. There were three appointments outstanding where consensus has not been achieved between the political groups and therefore these have been referred to Council as set out in the recommendations in the report.

He also advised that Councillor Reid had now been appointed by Cabinet to the Friends of Leckhampton Hill to fill the remaining vacancy. He reminded Members that there was still a vacancy for the Hillview Community Centre should anyone wish to put their name forward.

Upon a vote it was

RESOLVED THAT:

i) Councillor Barnes be appointed as the Council's observer on the Everyman Theatre Board Voting (For CIIr. Barnes 19, for Cllr. Harman 8)
ii) Councillor McCloskey be appointed as the Council's representative on the Cotswold Conservation Board Voting (For CIIr. McCloskey 19, for CIIr. Hall 9)
iii) Councillor Colin Hay be appointed as the Council's observer on the Board of UBICO
Voting (For Cllr. Colin Hay 19, for Cllr. Harman 8)

15. NOTICES OF MOTION

Councillor Wall left the meeting at 5.50 pm .

Councillor Driver proposed the following motion which was seconded by Councillor Regan:

Given recent exposé reports in the press both national and international regarding the sex trade and exploitation of young women because of people smuggling and the sex trade in Cheltenham - this Council resolves to:-

1. Work collaboratively with the Gloucestershire Safeguarding Childrens Board, Gloucestershire Safeguarding Adults Board and Child Exploitation and Online Protection Centre to develop a dedicated council strategy
2. Investigate potential impact of licensed sex industry and other venues which might impact in four areas (vulnerable adults / young adults / children / people smuggling)
3. Commit to re-invest funding from Cheltenham's night time economy into the fight against sexual exploitation

Page 24

In introducing the motion, Councillor Driver suggested that the council needed to give more thought to the night-time economy. There was much said about what it did for Cheltenham but in her view all it did was make a mess on the streets and provide profits to a corporate company elsewhere. She acknowledged that the police and other organisations had done a lot to try and combat the sex trade and exploitation and the council had also done their bit, but there was a necessity for all organisations to work together. They needed to be particularly aware of vulnerable and neglected young people, possibly with learning difficulties, as she felt a lot of them were being missed.

Members were generally supportive of the sentiments behind the motion and that protection of vulnerable young people must be a priority. If there were issues in Cheltenham then they needed to be addressed and this should be in partnership with other organisations. This kind of activity was an abomination and must be treated very seriously not least because it was hidden under the surface. Some members referred to a recent Channel 4 documentary which had featured a raid in the town on a property were young women were being trafficked. One member did point out that Cheltenham had been featured in the documentary as a typical town to highlight that even a respectable place like Cheltenham could have these problems. Another member highlighted the coverage in the Daily Mail during race week about the sex trade in the town. There may be an opportunity for the Borough Council to take a more proactive stance and there was a need to make members and officers more aware of what was being done and how to report any cases or suspicions.

Although members supported the general thrust of the motion, there were some concerns about the precise wording and resolutions. There were some doubts expressed about whether it would be legitimate to use the revenue from the night-time economy for this purpose as there were strict regulations concerning its use. The night-time economy also employed a lot of people in Cheltenham and therefore did bring benefits to the town. It was also important to distinguish between the licensed sex industry and the criminal offence of exploitation for sexual purposes. The latter was certainly not an 'industry'. The proposal that the council should produce its own strategy was challenged as progress could only be made by working in partnership with other organisations, particularly the police.

Councillor Garnham, as chairman of the Police Authority, acknowledged that there was a problem in Cheltenham but there was a need to be careful about the facts. He updated members on the Pentameter operation carried out by the police in 2008 to address this issue which had been featured in the Channel 4 documentary. As a result there had been 150 arrests and three of those had been in Cheltenham. The initiative in Gloucestershire was seen as an example of good practice. He explained that the Detective Inspector heading up the Public Protection Bureau was already working in this area and should be a point of contact for the council if they wanted to pursue it.

Councillor Barnes and Councillor Seacome, as previous and current chair of the Council's Licensing Committee, highlighted that people trafficking was not operating within the licensed trade but was undercover and unacceptable. The Licensing Committee had made every effort to ensure that establishments were

Page 25

properly licensed and indeed an establishment not operating within its licence had been closed down during the last race week. The council should not be complacent but they were reasonably confident that the officers and police involved in licensing were ensuring that establishments were being operated within the legal framework. The council had only licensed one sex shop in the last 10 years for the intention of selling adult videos. Lap dancing and other similar venues typically applied for a Temporary Event Notice which allowed them to operate for a limited period such as race week. They were then closed down once the notice expired.

As the County Cabinet Member responsible for this area, Councillor McLain advised that he received regular reports on this issue. He highlighted the work already being done by the safeguarding boards and suggested that the council may want to hear more about the potential projects that they could suggest. The council may wish to see whether it could make better use of the wealth of information held by Cheltenham Borough Homes in addressing the trafficking issue. Finally a considerable amount of research had been done into the links with the licensed sex industry and this was available on the intranet.

During the debate it had been suggested that the matter be referred to the Overview and Scrutiny Committee with the option of setting up a scrutiny task group which would report back to Council. Councillor Smith, as chair of the committee, suggested it would need a period of at least six months to carry out a review and therefore a report back to Council in December will be appropriate. The O\&S committee could initiate the task group at its next meeting on 16 July 2012.

The Cabinet Member Housing and Safety supported the sentiment of the motion and clearly if there were issues they needed to be addressed. As a safeguarding organisation the council was already taking some action and he would welcome the support of a working group to look at this in more detail.

In her summing up, Councillor Driver was delighted that the motion had prompted a good debate on this issue.

Upon a vote the motion was CARRIED unanimously and it was also
Resolved that the matter be referred to the Overview and Scrutiny Committee to set up a working group to review the issue and report back to Council in December 2012.

16. TO RECEIVE PETITIONS

None received.
17. ANY OTHER ITEM THE MAYOR DETERMINES AS URGENT AND WHICH REQUIRES A DECISION
There was no urgent business.

This page is intentionally left blank Page 26

Minute Item 9

Page 87

Friends of Weaver's Field

Ladies and Gentlemen of Cheltenham Borough Council.
We: The 'Friends of weaver's Field' Warden Hill, present this petition to you.
Over 1,000 people signed the petition in objection to a Proposal from Councillor Whyborn, to change the majority of our beautiful green open space, in Warden Hill, Cheltenham.

We wish to state unequivocally that our hill, Warden Hill, on Weaver's Field is not a site that needs altering.
ie majority of signatories are from Warden Hill and Hatherley. But past residents hearing of the plans signed, many quoting their happy childhood here.

Were this land unused, unloved, or unwanted by the population we would not be here today. Your legal department has received many letters of objection from local residents outlining so many, very valid reasons why this proposal should not be proceeded with.

We cannot believe that, or understand why, you should want to get rid of this wonderful green open space

To outline just a few of these objections..... the land is used weekly by hundreds of people, young and old for walks, exercise, fruit picking, ball yames, kite flying, bird watching, nature trails, picnics and has been so-used for over 50 years.

The field and hill are teaming with wild birds, All wild birds are protected under the Wildlife and Countryside Act, and the field supports a variety of other wild life, including Bats and Slow-worms also protected under the Act.

This is an area formerly promised in Perpetuity to remain as 'Green Open Space'.

Pagge8

The placing of allotments on it would require a large hard-standing for a car park, a wide gravel path behind many of the houses and a high fence, cutting off by far the better part of the land and virtually the whole of the hill viewpoint.... Amounting to hundreds of metres around the site, preventing access to the majority of the field for the general public.

Providing an amenity for the minority and preventing access for the vast majority is illogical and unfair. The hill on Weaver's Field is Warden Hill! It has been in existence since at least 1648 when it was named Warden's Hill.

As recently as Jubilee Tuesday - the $4^{\text {th }}$ of June, we held our large street party in the entrance to the field, and on the same evening at 10pm -many others from around the estate gathered on top of the hill to view the Jubilee beacons ... using the hill for what is believed was its original purpose ... namely a '"/arden's Hill, a lookout point.... And we were clearly able to see at least 7 of the Fire Beacons from 2 counties.

The Leckhampton with Warden Hill Parish Council, whose responsibility it is to provide allotments, have written to you, informing you that they wish to see this land remain as it is; A valuable public amenity!

The neighbouring Up Hatherley Parish Council - from Mr.Whyborn's own ward have written to you with the same message.

We the Friends of Weaver's Field have made application to have this beautiful green open space recognised as our Village Green, supported by sworn evidence of a total of over 870 years of collective usage.
'arden Hill, as a ward currently sits $15^{\text {th }}$ out of twenty for the least amount of green open space in Cheltenham according to your own figures, please don't push us lower.

We urge you therefore to hear our petition, to listen to the people of Warden Hill and to reject this proposal.

Thank you...

Page 29
 DEBATE ABOUT PROPOSED ALLOTMENTS ON WEAVERS FIELD

Thank you, Mr Mayor.
(Preface) First of all thank Mr Rastelli for clearly articulating the concerns of the petitioners (ad-lib wording), and thank officers for very substantial work to date, including the helpful briefing report for this meeting.

- The question of putting allotments on Weavers Field has been a very difficult one, and has involved not only listening to the demands of people on the waiting lists for allotments in an area where suitable land is scarce, but also listening to the needs of neighbours, and the concerns of the general public who have issues about possible loss of amenity in an area where public open space is limited, and hills are rare. Moreover CBC has a moral and political commitment dating from when the council acquired the Weavers Field land in the 1990's, not to build houses on Warden Hill:
- In addition the Council has a statutory duty to satisfy demands for allotmients, albeit the details of this duty are not well defined in statute law.
- Although many issues have been rightly raised, and not only by the petitioners, I believe the three which carry most weight are these: 1) the need to provide allotments in the south of Cheltenham within a reasonable distance of the applicants' homes 2) the amenity value of being able to walk on the hill, and to enjoy the view from the top; 3) the need to maintain sufficient off-street areas for dog walking.
- Land in the south of Cheltenham, which is where most allotments are needed, is very scarce, and the Council is also trying to negotiate sites in the Leckhampton area, and potentially will look at areas further to the west of Warden Hill. There is very little council owned land, so other options are also being explored. Nobody should pretend this is easy, and people who own land in the area are tending to hold it - or offer it on very short leases of in some cases only months - in the hope that it will become valuable for housing. In order to complete its allotment strategy, the Council may well be faced with trying to buy or rent land outside the borough, or in the last resort to

PRge日0

compulsorily purchase land within it. No options are particularly attractive or costeffective for the taxpayers of Cheltenham. My view, and advice from officers, is that we will need a number of sites to satisfy demand, and there are very limited choices, particularly within reasonable travelling distance of the Hatherley/Warden Hill area.

- It would be very easy to simply turn round and withdraw the proposals. However this would be unfair to the several hundred people who have been waiting for some years for allotments, and in the limit could provoke a legal challenge that the Council was not serious about its responsibilities. We cannot simply take the easy options; however I note the petitioners' words "the preliminary proposal is not acceptable" and in the way that the petition is worded I could accept that, and so I would propose to sit down with Mr Rastelli and a couple of his colleagues, plus the ward councillors, to discuss compromise scheme(s), which would address the amenity concerns whilst still providing a substantial number of allotment plots.
- Whilst it's both right and helpful that full council debate this, as we are about to do, under the council's constitution, the decision on how to assess objections to date rests with cabinet. In addition there is a requirement to bring any proposal before the planning committee. It will be part of that committee's job to look at all aspects of the application, including matters which have concerned residents, such as whether they would be overlooked any more than they are already, and/or concerns about drainage, car parking and the like. Preliminary indications to date from planning officers are there are no reasons in principle why a planning application should not be made and considered.

So I propose we resolve the following at the conclusion of the debate:

1) That the cabinet member and officers seek a discussion with representatives of the petitioners and with ward councillors with a view to improving amenity value of the scheme and that 2) revised proposals are brought to cabinet which take this into account.

New Conduct Regime - Appointment of Independent Person(s)

1. Council is referred to section 4 of the Report on the new Conduct Regime (agenda item 13) which refers to the appointment of Independent Person(s).
2. At its meeting in May, the Council was asked to approve the advertisement process for the appointment of up to 3 Independent Person(s) in order to provide flexibility pending consideration as to how the new Conduct Regime might be implemented within Cheltenham Borough Council.
3. The arrangements which are now recommended by the Constitution Working Group are contained within the report previously circulated. The recommendation envisages that the Independent Person(s) will, as well as fulfilling the statutory requirements, be consulted by the Monitoring Officer as part of the initial assessment of complaints and will be co-opted, non-voting members of the Standards Committee.
4. Whilst it is impossible, at this stage, to predict what the workload for the Independent Person(s) may be, the Monitoring Officer's recommendation is that the Council should appoint 2 Independent Persons at this Council meeting. If, having implemented the new arrangements, it is apparent that further appointments are necessary; the Council can review the position.
5. A Member Panel (Cllrs. Jordan, Garnham and Godwin) interviewed 3 candidates on the $20^{\text {th }}$ June 2012. Each of the candidates' suitability for the role was assessed against the Job Description and Person Specification approved by the Council and consideration was given to whether skills were apparent which would enable them to gain the respect and confidence of members of the Borough Council and its 5 Parish Councils.
6. The Member Panel was unanimous in its recommendation to the Council to appoint Mr. Duncan Chittenden and Mr. Martin Jauch as Independent Persons for Cheltenham Borough Council. A brief synopsis of their relevant experience is set out below.

Mr. Duncan Chittenden - Resident in Cheltenham Borough, has wide experience of employment in the public sector and currently an Independent co-opted member of the Council's Standards Committee which position will cease on the $30^{\text {th }}$ June 2012. Also is Chairman of Gloucestershire Police Authority Standards Committee, having served on that Committee for 4 years.

Mr. Martin Jauch - Resident in Gloucestershire adjacent to Cheltenham Borough and was a Metropolitan police officer for over 30 years. Has experience as a coopted Independent Member initially of a Conservation Board and then of Cotswold District Council Standards Committee which he has chaired for 2 years and has, in that capacity, dealt with complex cases and Hearings.
7. In accordance with the Localism Act 2011, the appointment must be approved by a majority of the members of the Council.

This page is intentionally left blank PRges8

Cheltenham Borough Council

Council - 24 September 2012
Recommendations of the Independent Remuneration Panel (IRP)
regarding Members' Scheme of Allowances

Accountable member	Council
Accountable officer	Director of Commissioning, Jane Griffiths
Ward(s) affected	No
Significant Decision	The council's current scheme of Members' allowances, (08-09), was adopted in December 2007. The law requires that Members' schemes of allowances are reviewed annually unless they are linked to some form of automatic indexation in which case they must be reviewed at least once in every four years. Before an authority can review its scheme of allowances it must first have considered a report from an Independent Remuneration Panel (IRP). A full review was carried out by the IRP in 2010 and its recommendations were approved by Council in December that year.
The IRP reported to Council in March 2012 with the recommendation that they considered the changes to the Standards regime once the new arrangements were in place. The IRP have now considered the new arrangements and made recommendations regarding allowances.	
The Council is required to consider the recommendations and, if acceptable, to resolve to adopt them. If the Council rejects the recommendations then no SRA will be payable to the chair of the new Standards Committee as the existing scheme applied to the former Standards Committee which was dissolved by Council in June 2012.	
Recommendations	I therefore recommend that: Council considers the recommendations set out in the attached IRP
report and summarised in part 5 below, and determines whether to	
adopt them.	
Council authorises the Director of Commissioning to implement any	
necessary changes to the scheme of allowances and authorises the	
Borough Solicitor and Monitoring Officer to make any necessary	
changes to Council's constitution.	

$\left.\left.\begin{array}{|l|l|}\hline \text { Financial implications } & \begin{array}{l}\text { There is no separate budget currently identified for the payment of the } \\ \text { Special Responsibility Allowance (SRA) for the chair of Standards } \\ \text { Committee. However the £302 recommended allowance will be absorbed } \\ \text { within existing Democratic budgets. } \\ \text { Contact officer: Sarah Didcote, Group Accountant } \\ \text { Sarah.Didcote@cheltenham.gov.uk, } \\ \text { 01242 264125 }\end{array} \\ \hline \text { Legal implications } & \begin{array}{l}\text { The Local Authorities (Members' Allowances) England Regulations 2003 } \\ \text { SI 2003/1021 set out a framework for the creation, implementation and } \\ \text { amendment of schemes of allowances for Members and Co-optees of } \\ \text { local authorities. The main provisions are as follows: }\end{array} \\ & \begin{array}{l}\text { Reg 10 imposes the requirement that local authorities make a scheme for } \\ \text { payment of basic allowances. Where the authority intends to pay } \\ \text { allowances in respect of other matters such as special responsibilities or } \\ \text { co-optees then these should be included within the scheme. }\end{array} \\ & \begin{array}{l}\text { Schemes of allowances must be reviewed by an Independent } \\ \text { Remuneration Panel (IRP) annually and no less than once every four } \\ \text { years where they are index linked. Reg 19 stipulates that before an } \\ \text { authority can amend or revoke its scheme it must have first considered a } \\ \text { report from its IRP and have regard to its recommendations, although the } \\ \text { authority is not bound to follow them. } \\ \text { R.20(1) requires authorities to establish an IRP either itself or in } \\ \text { collaboration with other authorities. The IRP must consist of at least three } \\ \text { Members who are not Members of the authority in respect of which they } \\ \text { are making recommendations nor disqualified from being or becoming a } \\ \text { member of an authority. }\end{array} \\ \text { Under R.20(3) Authorities are empowered to pay the expenses incurred by } \\ \text { the IRP in carrying out its functions and this includes such expenses or } \\ \text { allowances as the authority shall determine. }\end{array}\right\} \begin{array}{l}\text { R.16 and 22 impose a number of requirements as to the publication of the } \\ \text { newly adopted scheme and the recommendations received from the IRP } \\ \text { considered at the time of formulating and adopting the scheme. The } \\ \text { publicity requirements are intended to publicise the scheme adopted and } \\ \text { highlight any differences between it and the one recommended by the IRP } \\ \text { Contact officer: Donna Ruck, Solicitor, One Legal, } \\ \text { donna.ruck@tewkesbury.gov.uk, Tel: 01684 272696 }\end{array}\right\}$

Key risks	The determination of allowances is a sensitive subject both from the perspective of Councillors themselves and the public who elect them. In view of this it is important that any scheme adopted is objectively reasonable and based upon some logical and fair mechanism.
Corporate and community plan Implications	None
Environmental and climate change implications	None

1. Background

1.1 The Local Authorities (Members' Allowances) England Regulations 2003 sets out the framework within which local authorities can establish and amend schemes providing for the payment of allowances to Elected and Co-opted Members of their councils. In particular the regulations provide that schemes which are linked to an index to determine annual increases in allowances must be reviewed at least once in every four years.
1.2 When reviewing its scheme a council may not adopt a new scheme or re-adopt an old scheme without first having considered the recommendations of an Independent Remuneration Panel established for that purpose.
1.3 The existing scheme of Members' allowances in place at Cheltenham Borough Council was adopted in March 2007 and provides for basic allowances for all elected Members, special responsibility allowances (SRAs) paid in respect of identified roles and responsibilities and travel and dependent carers payments. The scheme was last reviewed in December 2010 following the full review by the IRP panel and the revised schemed agreed by Council in December that year.
1.4 In the budget agreed by Council in February 2010, Members' and Mayoral allowances were frozen for a period of 5 years in the Medium Term Financial Strategy up to and including 2014/15 and SRAs for the Leader and Cabinet Members were reduced by 5% as a budget saving. Consequently there was no need for the panel to meet in 2011. This freeze is still in operation and the IRP were made fully aware of the latest budget situation within the council.
1.5 This year the panel were convened in February to consider the new scrutiny arrangements effective from May 2012 and Members ICT. The panel considered the new standards regime in July 2012.
1.6 The next full review required by legislation will commence in September 2014 reporting to Council in December 2014.

2. Rationale for recommendations

2.1 The IRP considered that there was a reduction in workload and level of risk and responsibility for the chair of the new Standards Committee compared to the chair of the former Standards Committee who received an SRA of $£ 907$ per annum. They have set a new SRA accordingly.
3. Alternative options considered
3.1 The review undertaken by the IRP constitutes a thorough and reasoned analysis of the allowance rates applicable to Councillors and those co-opted to serve the council. In reaching its

Page 36

conclusions it has taken advice and gathered a range of information and considered a range of options which are detailed in their report.

4. Consultation and feedback

4.1 Detailed in the IRP report.

5. The recomendations

5.1 The recommendation and the rationale for it are set out in the IRP report but I summarise them here:

1. That the Special Responsibility Allowance (SRA) for the chair of Standards Committee under the new Standards arrangements should be set to $£ 302$ per annum, effective from 1 July 2012.
2. That all other aspects of the Members Allowance Scheme remain unchanged.

6. Performance management -monitoring and review

6.1 The IRP propose to review the SRAs for overview and scrutiny and Standards once they have been operating for at least 12 months to ensure the SRAs are set at an appropriate level and will require evidence of how the new roles are operating in practice.

Report author	Contact officer: Rosalind Reeves, Democratic Services Manager , Rosalind.reeves@cheItenham.gov.uk, 01242 774937		
Appendices	1. Risk Assessment 2. IRP Report		
Background information	1. Part 6 CBC Constitution - Members' Scheme of Allowances 2. IRP report to Council 13 December 2010		3. Reports to Council on the new Standards Regime 14 May 2012
:---			
and 25 June 2012			

The risk				Original risk score(impact x likelihood)			Managing risk				
Risk ref.	Risk description	Risk Owner	Date raised	1	L	Score	Control	Action	Deadline	Responsible officer	Transferred to risk register
	If the number of complaints was to escalate the workload on the Standards Committee may increase and result in an under estimate of the role of the chair.			2	2	4	Accept	IRP to review after 12 months.		Democratic Services Manager	

This page is intentionally left blank Page 38

Page 39

Cheltenham Borough Council
 A report of the Independent Remuneration Panel

July 2012

1. Summary

1.1 When the panel last met on 27 February 2012 we received a discussion paper which updated us on the various issues relating to the Members Allowances Scheme. At the time we noted the imminent changes to the Standards regime and requested a further report once the arrangements were finalised.
1.2 We received a discussion paper from the Democratic Services Manager on 9 July 2012 setting out the arrangements. We considered the issues were well set out in the report and there was no need to hold a meeting. We concluded our recommendations through electronic communication and these are set out in this report for consideration by Council.

2. New Standards Regime

2.1 Standards Committee Chair and Independent Members of the former Standards Committee

The local filter arrangements, whereby local standards committees deal with complaints against their members or parish councillors, came into force in May 2007.
2.2 The Standards Board for England ceased to exist from March 2012 and local authorities were issued with the new regulations on 8 June 2012. Following this Council adopted a new local code of conduct on 25 June 2012 and opted to continue to have a Standards Committee to deal with local complaints against parish councillors or borough councillors. The report is available on the council's website. Report to Council on New Code of Conduct regime. Council approved a recommendation requesting that the IRP be requested to review the Members Scheme of Allowances consequent upon the changes to the Standards Committee.
2.3 The new legislation makes it a criminal offence to deliberately withhold or misrepresent certain disclosable interests. This could mean that serious misconduct that previously led to censure by a local authority standards committee and having to make an apology could instead possibly result in a criminal conviction.
2.4 The new Standards Committee for CBC is made up of a politically balanced group of seven elected members and two Independent Persons who will be in attendance to offer their advice to the committee but will not have a vote.
2.5 Following a report to Council on 14 May 2012 Report to Council on Independent Persons it was agreed that the Independent Person should receive an allowance of $£ 300$ per annum plus travelling expenses. In acting as the Independent Person they are not acting as an elected or co-optee Member of the Borough Council and so this allowance does not form part of the Members Allowance scheme. Therefore an additional allowance for attendance at the Standards Committee is not appropriate. Two Independent Persons were appointed by Council following a recruitment and interview process.

3. Assesment of the SRA for the chair of the new Standards Committee

3.1 Allowances relating to the former Standards Committee

The SRAs set for the chair of the committee and for the independent members were based on their attendance at 4 meeages f Qhe Standard Committee and attendance at an estimated 8 subcommittees per annum.
3.2 There were 3 elected members on the former Standards Committee and 5 independent members. The chair of the Standards Committee received an SRA of $£ 907$ p.a and each of the independent members (including the chair) $£ 302$ p.a. There were 3 places for 3 parish council representatives and they did not receive an SRA. The cost of investigating any complaints against parish councils have to be borne by the borough council and therefore it was considered appropriate that the parish councillors provided their service on a voluntary basis.
3.3 In practice the number of meetings has been considerably less and only 3 members of the committee are involved in any particular sub-committee.

YEAR	Standards Committee meetings	Initial Assessments	Hearing	Total
2010	4	1	2	6
2011	3	1	1	5
2012	0	1	0	1

3.4 The previous SRA for the chair of the Standards Committee was determined on the basis of 12 meetings per year, a MEDIUM level of experience and knowledge and a HIGH level of responsibility and risk. Using the current basis of calculations, the SRA came out at $£ 907$ per annum and this was our recommendation.
3.5 Under the new regime, the Monitoring Officer will be responsible for considering the initial complaint in consultation with the Independent Person(s). This replaces the convening of an initial assessment sub-committee which is required under the current system to meet and decide whether the complaint warrants further investigation. There will only be a Hearing sub-committee if the Monitoring Officer advises that that the complaint warrants further investigation. This should reduce the number of trivial complaints which come before the committee. The Chair of the former Standards Committee also attended the annual national conferences but this will no longer take place as the Standards Board for England has been abolished.
3.6 The committee is no longer a statutory committee and initial determination is by Monitoring Officer in consultation with Independent person. We feel both these factors reduce the level of responsibility and risk for the chair. We acknowledge there is a risk of reputational damage to the council and members if complaints are not handled appropriately and sensitively by the committee but we feel this is MEDIUM.
3.7 Thus the new SRA would be calculated on the basis of 3-4 committee meetings per year with a MEDIUM level of experience and knowledge given the high degree of support from the Monitoring Officer. We would assess the level of responsibility and risk as MEDIUM.
3.8 Using the current basis of calculations this comes up with an allowance for the chair of the new Standards Committee as

Recommendation

That the chair of the new Standards Committee should receive an SRA of $£ 302$ per annum

4. Summary

4.1 As there were no other matters that the panel were asked to consider, we advise that all other parts of the Members Allowance Scheme remain unchanged and we ask Council to consider the recommendation set out in this report.

Panel Members:

Mr Paul Johnstone (chairman)	Director of Operations, RR Donnelley Global Document Solutions Panel Previous Member for Tewkesbury BC IRP
Mr Quentin Tallon (vice-chair)	Cheltenham TUC and Panel Member for Gloucestershire CC IRP
Mrs Patricia Dundas	Gloucestershire Hospitals
Mrs Joyce Williams	Retired Public Servant

This page is intentionally left blank Page 42

Cheltenham Borough Council

Council-24 September, 2012

Joint Core Strategy for Gloucester, Cheltenham and Tewkesbury Housing Needs Assessment Report

Accountable member	Councillor Steve Jordan, Leader
Accountable officer	Andrew North, Chief Executive
Ward(s) affected	All
Key Decision	Yes
Executive summary	The issue which generated most responses to the consultation earlier this year on "Developing The Preferred Option" for the Joint Core Strategy (JCS) was the methodology used to calculate future housing requirements for the area. In response to these concerns independent consultants (Nathaniel Lichfield and Partners 'NLP') have been engaged to review the JCS methodology and make appropriate recommendations. The purpose of this report is to note the progress being made on the evidence base for establishing the objectively assessed need for housing in the JCS area.
Recommendations	That members:
	1. Note NLP's review that the demographic methodology used to establish housing requirements for the JCS area for the period from 2011 to 2031 as part of the "developing the Preferred Option" document, was appropriate at the time, but that the data upon which the methodology relied will not in future be maintained by Gloucestershire County Council and should be based upon Office of National Statistics (ONS) and Department of Communities and Local Government (DCLG) data, because this will be consistently available and subject to on-going updating.
	2. Note NLP's commentary and advice regarding the consultation responses.
	3. Agree that a demographic projection solely based on latest ONS and CLG data indicates a population growth of 44,700 . This would generate housing need of 28,500 dwellings for the JCS area for the period from 2011 to 2031 using NLP's methodology.
	4. Agree that "objectively assessed need" for the JCS area should be based upon local job projections and the alignment of housing and employment provision. Also to agree that in preparing the JCS Preferred Option document, further work will be carried out to understand the level of economic growth assumed in the demographic, Cambridge Econometrics and Experian Business Strategies Ltd projections and work with the Local Enterprise Partnership to establish the level of economic growth for the JCS area during the period up to 2031 and the potential implications that

Page 44

this may have on the level of housing required.
5. Note that economic projections from Cambridge Econometrics and Experian Business Strategies Ltd forecast housing provision in a range between 32,500 and 43,220 dwellings to align proposed job growth and housing provision for the JCS area for the period from 2011 to 2031.
6. Agree that in preparing the JCS Preferred Option Document further work will be carried out to understand the current trend in household size and the implications on the level of housing required.
7. Agree that the JCS needs to balance environmental, social and economic issues and that the social and environmental impact of the "objectively assessed housing need" will be considered in preparing the Preferred Option version of the plan.

Financial implications	The JCS authorities are preparing the Preferred Option Joint Core Strategy which is due for consideration by each of the Councils in 2013. It is therefore essential that agreement is reached on the objectively assessed need if they are to continue to progress to the next stage of the document. Should the recommendations be accepted, there will be no financial implications associated with this report given that the JCS is being prepared from within existing budgets.
Should the recommendations of this report not be accepted by the Council, then there is likely to be a considerable delay in the production of the Preferred Option document. This could also result in work on the JCS being suspended This will increase the risk of speculative planning applications for all three JCS authorities in advance of the development plan process.	
It is also important that the JCS progresses quickly in order to progress the associated Infrastructure Delivery Plan and any Community Infrastructure Levy preparatory work.	
A delay in agreeing the JCS may result in difficulties in defending inappropriate development which may lead to the need to incur significant expenditure to challenge decisions made by the planning inspector.	
Contact officer: Mark Sheldon , mark.sheldon	
@cheltenham.gov.uk, 01242	

Page 45

Legal implications	The Joint Core Strategy forms part of the Council's statutory emerging development plan and it is essential to have a 'plan led'system if the planning process is to deliver sustainable growth. The key recommendation in this report is to agree the process by which the objectively assessed need for new homes in the JCS area will be determined. In the absence of an up to date JCS, and supporting Local Plan, Local Authorities are vulnerable to challenge when they are unable to produce a robust 5 year housing land supply (HLS). In the absence of a 5 year HLS Local Authorities are having imposed upon them, by the Secretary of State, planning permissions which need not necessarily comply with the current or emerging Local Plan or any of the emerging Strategies in the JCS. It is therefore essential that Local Plans and the JCS are progressed expeditiously if the threat of adverse planning decisions being forced upon Local Authorities is to be avoided. Contact officer: Neil Weeks, neil.weeks@tewkesbury.gov.uk, 01684
HR implications (including learning and organisational development)	There are no staffing or Trade Union implications.
Contact officer: Julie McCarthy, julie.mccarthy	
@cheltenham.gov.uk, 01242	

Page 46

Key risks	The JCS authorities have an up-to-date Risk Register and this is monitored on a regular basis, however, the risks associated with this report comprise: 1. One or more authority not agreeing the recommendations in this report. Should this occur, the preparation of the JCS Preferred Option Document will be delayed. This would have further implications for subsequent examination and adoption of the document. Delay will also have implications for ensuring that the development of the area remains plan-led, avoiding speculative planning applications being submitted. In order to assist the Council in this decision, Members have been provided with up to date and independent evidence which supports the recommendations. 2. The approach to establishing the objectively assessed need is inconsistent between Councils. It is critical that all Councils agree that the methodology set out in Appendix 1 and the recommendations contained within this report represent a prudent approach to determining the objectively assessed need for new homes and jobs in the JCS area. Without this agreement the Joint Core Strategy programme will be unable to progress. Similar to the risk above, this is likely to increase the likelihood of the area failing to be plan-led, in the likely event that applications are submitted in advance of JCS adoption. In order to assist the Council in this decision, Members have been provided with up to date and independent evidence which supports the recommendation. 3. Failure to progress the Joint Core Strategy will also compromise the preparation of other development plan documents for the authority, such as Local Plans. The JCS is the strategic planning document for the area and detailed development plan policy will come forward through Local Plans. As the development plan needs to be internally consistent, work on district plans should accord with the policies and allocations within the strategic level JCS.
Corporate and community plan Implications	Any significant delay in progressing the JCS, having particular regard to the provisions of the National Planning Policy Framework (NPPF), will have implications across a range of areas including potential environmental, social, economic and financial impacts.
Environmental and climate change implications	The JCS is subject to a statutory Sustainability Appraisal Process which incorporates the requirements of Strategic Environmental Assessment.

Page 47

1. Background and Key Issues

Paragraphs 1.7 to 3.5 below comprise the agreed professional advice of the Joint Core Strategy officer team (Cheltenham Borough Council, Tewkesbury Borough Council and Gloucester City Council) having regard to the report of Nathaniel Lichfield \& Partners included at Appendix 3 together with the provisions of the National Planning Policy Framework and other material planning considerations. Identical officer advice is being given in reports to all three Joint Core Strategy authorities.
1.1 The Joint Core Strategy "Developing the Preferred Option" consultation document was published for public consultation between December 2011 and February 2012.
1.2 The consultation generated considerable public interest and over 3,300 responses were submitted raising a wide range of issues. The issue which generated most responses was the methodology used to calculate future housing requirements for the area. A report summarising the consultation responses has been published on the Joint Core Strategy website, although at this stage the comments are published without any formal response from the three councils. A full response to the comments received will be contained within the consultation report that will accompany the next formal publication of the Joint Core Strategy - Preferred Option.
1.3 In commenting on the Developing the Preferred Option consultation document, many respondents have challenged the reliability of the methodology and the data used in the calculation of future housing requirements along with raising several other related issues. Housing is a key part of the plan strategy and it is therefore essential to address this point so that the Joint Core Strategy progresses on the basis of robust evidence. In response to these concerns, independent consultants (Nathaniel Lichfield and Partners or NLP) have been engaged to review the JCS methodology and make appropriate recommendations.

Establishing housing requirements and identifying objectively assessed need

1.4 Members will be aware that the NPPF sets out a clear commitment to sustainable development and positive growth:-

- "local planning authorities should positively seek opportunities to meet the development needs of their area;
- Local Plans should meet objectively assessed needs, with sufficient flexibility to adapt to rapid change, unless:
- any adverse impacts of doing so would significantly and demonstrably outweigh the benefits, when assessed against the policies in this Framework as a whole; or
- specific policies in this Framework indicate development should be restricted." (para 14)
1.5 The "specific policies" referred to above would include those for protected sites such as Sites of Special Scientific Interest, land designated as Area of Outstanding Natural Beauty or Green Belt and locations at risk of flooding.
1.6 Whilst development plans have always been required to identify and make provision for future housing requirements, the NPPF now requires the JCS authorities to identify the "objectively assessed need" for housing and other development before proceeding with the preparation of the Preferred Option. In this context, it should be noted that the NPPF is not simply informal guidance. The JCS will need to demonstrate that it is consistent with the NPPF or risk being found unsound.

Nathaniel Lichfield and Partners (NLP)

1.7 Given the need to identify the Objectively Assessed Need and taking into account the level of scrutiny the JCS housing requirements have been subjected to, the three Councils have therefore

Page 48

commissioned independent consultants (Nathaniel Lichfield \& Partners - NLP) to:-

- assess the approach previously taken in terms of population projections, household estimates and dwelling requirements;
- review the consultation issues frequently raised relating to these matters;
- Provide a clear methodology for the distribution of housing numbers across the JCS are and the necessary policy wording/framework to support this. This should be for the overall JCS requirement, district requirements and the Gloucester and Cheltenham wider policy areas; and
- provide a clear understanding of the impact of the NPPF on housing requirements and recommend a methodological approach that will satisfy the associated evidential and soundness tests.

Housing and population evidence base

1.8 The first task undertaken by the consultants was to review the housing and population evidence base supporting the 'Developing the Preferred Option' document and establish the objectively assessed need for housing within the JCS area. The starting point for this is the Council's Housing Background Paper that was published alongside the Developing the Preferred Option document in 2011. This sets out a housing requirement for the three authorities based upon information contained within the locally-derived Gloucestershire County Council population projections.
1.9 In summary, the consultants have found that the methodology used in the Housing Background Paper was appropriate to inform the Developing the Preferred Options Document and that there were no serious flaws in the approach. However, the consultants advise that certain elements of the information used to inform the work in 2011 are in need of revision because more up to date and reliable sources of data to are now available. Unfortunately, due to reduced resources, Gloucestershire County Council is no longer undertaking its own demographic projections and so it is necessary to rely on alternative sources. The consultants have recommended appropriate revised data sources in their report. Members will note that the need to monitor and review evidence as it emerges is a normal part of the plan preparation process to ensure that the evidence base underpinning the plan is up-to-date and sound.
1.10 From their work NLP have identified that in applying current data to that methodology, a housing need figure of about 30,000 dwellings over the plan period would be generated ${ }^{1}$. However, their recommendation is that this level of housing fails to take proper account of the economy and will not result in a sound or robust Objectively Assessed Need for development over the plan period. In addition NLP have recommended that there is no sound evidence to support any requirement lower than this.
1.11 In reviewing the previous work, the consultants have also advised that the Scenario A consultation option presented in 2011/12 is not robust as it fails to recognise the distinction between housing need and housing supply. It therefore does not reflect the level of housing need that exists in the area. As such, NLP advise that it would not be considered as sound by an Examination Inspector. Officers concur with this view.
1.12 In reviewing the Housing Background Paper work and making their recommendations, the consultants were also asked to consider any key issues arising from representations submitted to the Councils via the public consultation on housing and population projections. A full response to the general issues raised is included within their report attached at Appendix 1 setting out how these have influenced their recommendations.(see appendix 4 of NLP report)

[^0]
Page 49

Economic forecasts

1.13 Whilst NLP have concluded that the methodology used to date in the preparation of the JCS was appropriate, it is important for members to note that this work was undertaken and completed prior to introduction of the NPPF and particularly the new requirement to establish the "objectively assessed need" for development. Having regard to these changed evidential requirements, NLP have recommended that "objectively assessed need" should be based upon economic forecasts and not just demographic evidence alone. On this basis they have included within their report at Appendix 1 advice for the JCS authorities on the level of housing need that would be associated with up-to-date economic forecasts.
1.14 In order to establish this and understand the economic potential of the JCS area, NLP have used economic forecasts from two independent sources. The first forecast by Experian predicts that the area has the ability to generate an additional 15,500 jobs by 2031. The second forecast by Cambridge Econometrics predicts that the area has the potential to generate an additional 27,000 jobs by 2031. Whilst these two independent forecasts might indicate that the area has the potential to generate between 15,500 and 27,000 jobs over the plan period to 2031 , this also highlights the difficulty in understanding the reliability of economic forecasts and the need for further work to be undertaken..
1.15 Given that NLP are recommending that the objectively assessed need figure should be based upon economic projections and the need to align housing provision to jobs, they recommend that 15,500 jobs would require at least 32,500 new dwellings, whilst the forecast for 27,000 new jobs would indicate a need for at least 41,300 additional dwellings.
1.16 It is therefore critically important that in order to move forward and establish the objectively assessed need for housing in the JCS area the authorities use and explore the evidence provided by both Experian and Cambridge Econometrics to establish for themselves the level of jobs to be provided. From this further work an understanding and appreciation of the area's potential for economic growth, in terms of future jobs, will inform the objectively assessed need for housing.
1.17 This would also conform with the NPPF requirement for local authorities to "plan proactively to meet the needs of business". It is planned that over the coming months further work is undertaken with particular input from the Gloucestershire Local Enterprise Partnership to clarify the future economic potential of the area and ensure that the JCS Preferred Option adequately addresses and supports local needs and the potential for economic growth.
1.18 It will also be critical having regard to economic considerations that the JCS is flexible enough to allow adjustments in policy or in development requirements as circumstances change. To this end the established principle of "plan, monitor, manage" will become an important element of the plan strategy.
1.19 In addition to the further work required by all three authorities to assess the level of housing need in the JCS area the authorities will clearly need to consider where development should be located and when it should come forward. This will need to take into account the various constraints in the area and deliverability issues such as the provision of physical, social and green infrastructure as well as viability considerations.

2. Reasons for recommendations

2.1 The NPPF requires local authorities to demonstrate at examination that their plan is based upon robust, up-to-date evidence and that it has been positively prepared. This means that it is essential that the JCS authorities agree a consistent methodology for identifying housing need and plan positively to meet the need identified as a result of applying that methodology to nationally-recognised data sources

Page 50

3. Alternative options considered

3.1 The JCS authorities must have up to date information on the need for new homes and jobs, as required by the NPPF. As part of their assessment, NLP have considered both demographic and economic scenarios, looking at a range of data sources and projections. They have also carried out sensitivity tests to consider the implications of key factors such as natural change, international migration and alternative assumptions about commuting and unemployment.
3.2 In preparing the JCS, the authorities have available to them information from national and local data sources for both population and housing data. The 'Developing the Preferred Option' document in 2011-12 presented options for levels of development that ranged from 16,200 to 40,500 new dwellings.
3.3 In moving towards establishing the objectively assessed housing need figure for the JCS area, the consultants have reviewed the methodology in the Housing Background Paper that informed the 'Developing the Preferred Options' document, alongside alternative methodological comments received during the consultation period. In undertaking this work, they have also reviewed the use and robustness of local and national data sources to identify the most appropriate sources of data for this evidence.
3.4 Based upon their findings and as contained within their report, the consultants also explored a number of sensitivity tests. This includes testing the impacts of how various assumptions on population demographics, migration and housing demand may affect the overall need, and in turn support their final recommendation.
3.5 In conclusion, and whilst the JCS authorities have no reasonable alternative to preparing evidence that identifies the objectively assessed need for housing, the Councils' consultant in producing its recommendations has considered and tested a number of alternatives, including data, methodology and other approaches suggested through consultation.

4. Consultation and feedback

4.1 A member seminar led by NLP and counsel took place on $12^{\text {th }}$ July. Follow-up NLP sessions with political groups took place on $11^{\text {th }}$ September. No other consultation has been required for this report except as reported at page 2 above. The next public consultation on the JCS will be at the Preferred Option stage of plan preparation.

5. Performance management -monitoring and review

5.1 Recommendation 4 above entails that JCS officers, in conjunction with the LEP, establish the level of economic growth for the area to 2031. Outputs from this work to be reported through established JCS governance arrangements. Recommendation 6 will be acted upon as part of this process.

Report author: Joint
Core Strategy Team

Contact officer: David Halkyard, david.halkyard@cheltenham.gov.uk,

01242774988

Page 51

Appendices	1. Risk Assessment 2. Nathaniel Lichfield \& Partners Executive Summary*
	3. Nathaniel Lichfield \& Partners Report *NB figures at para 3.15 (2) on p. 17 should be $32,500-34,400$.
Background information	National Planning Policy Framework

The risk				Original risk score (impact x likelihood)			Managing risk				
Risk ref.	Risk description	Risk Owner	Date raised	$\begin{aligned} & \text { Impact } \\ & 1-5 \end{aligned}$	$\begin{aligned} & \hline \text { Likeli- } \\ & \text { hood } \end{aligned}$ 1-6	Score	Control	Action	Deadline	Responsible officer	Transferred to risk register
CR33	If the council does not keep the momentum going with regard to the JCS the policy vacuum left by abolition of the RSS and the resultant delay in projections and framework cold result in inappropriate development	Andrew North	$\begin{array}{\|c\|} \hline 10 \end{array}$ Aug 2010	4	5	20	reduce	Agreement across Gloucestershire districts to work collaboratively on determining housing and employment projections by the end of 2013. Econometric Housing Model received and analysis undertaken. Seminars for councillors to explain the projections. Decision to consult from all three councils and initial phase of consultation undertaken on development scenarios.Establishment of a member working group.	$\begin{aligned} & \hline 1 \mathrm{Apr} \\ & 2013 \end{aligned}$	Mike Redman/David Halkyard	

Explanatory notes

Impact - an assessment of the impact if the risk occurs on a scale of 1-5 (1 being least impact and 5 being major or critical)
Likelihood - how likely is it that the risk will occur on a scale of 1-6
(1 being almost impossible, 2 is very low, 3 is low, 4 significant, 5 high and 6 a very high probability)
Control - Either: Reduce / Accept / Transfer to 3rd party / Close

Page 53

Nathaniel Lichfield \& Partners
Planning. Design. Economics.

Gloucester, Cheltenham and Tewkesbury Joint Core Strategy

Assessment of Housing Requirements
Executive Summary

September 2012

Page 54

This document is formatted for double sided printing.
© Nathaniel Lichfield \& Partners Ltd 2012. Trading as Nathaniel Lichfield \& Partners. All Rights Reserved.
Registered Office:
14 Regent's Wharf
All Saints Street
London N1 9RL
All plans within this document produced by NLP are based upon Ordnance Survey mapping with the permission of Her Majesty's Stationery Office. © Crown Copyright reserved. Licence number AL50684A

Contents

1.0 Introduction 2
Policy Context 2
HEaDROOM 3
Local Background 4
$2.0 \quad$ The Components of Housing Need 6
3.0 Revised Assessment of Housing Need 13
Demographic Assessment. 14
Economic Assessment 16
4.0 Moving towards the JCS 19
Bringing the Evidence Together 19
Testing the Options 21
Moving toward a Preferred Option JCS 23

Introduction

Nathaniel Lichfield \& Partners (NLP) was appointed by the Gloucester City Council, Cheltenham Borough Council and Tewkesbury Borough Council to undertake an independent assessment of housing requirements for the Joint Core Strategy (JCS) area.

The key purpose of this study is to provide further evidence to support the emerging JCS by:
1 Verifying the approach that has been undertaken to date in respect of the Local Projections and Household estimates and the translation of these figures to dwelling requirements;

2 Reviewing the representations that have been made in respect of housing requirement matters and providing commentary and advice on the ways in which these might impact upon the assessment of market and affordable housing requirements;

3 Demonstrating the housing requirements for the overall JCS area, at an individual local authority area level, and for the Cheltenham and Gloucester Wider Policy Areas; and,

4 Providing a clear understanding of the impact of the National Planning Policy Framework (NPPF) upon housing requirements for the JCS area.

Policy Context

The context to this study is the continuing reform of the planning system to deliver on localism whereby responsibility for establishing housing requirement figures for Local Plans now falls to local councils.

The NPPF provides the policy context to the establishment of housing requirements. In seeking to "boost significantly" the supply of housing, it requires local planning authorities to "use their evidence base to ensure that their Local Plan meets the full, objectively assessed needs for market and affordable housing in the housing market area".

It also emphasises that local planning authorities should continue to demonstrate a 5 -year housing land supply - which is to be supplemented by an additional buffer of 5% to ensure choice and competition in the market or, where there has been a record of persistent under-delivery of housing, an additional buffer of 20%.

The NPPF requires local planning authorities to evidence and defend their local housing requirements at examination. This highlights the importance of ensuring that the housing requirement figures that are set out within Local Plans are soundly rooted in a robust evidence base. A failure to meet this requirement is highly likely to result in a Local Plan being unsound.

HEaDROOM

At the present time there is no commonly agreed approach for local planning authorities to follow in setting local housing requirements, beyond the principles established in national policy. In response, NLP has developed an analytical framework (HEaDROOM) for defining the quantum of housing that should be planned for through Local Development Frameworks.

Launched in July 2010, HEaDROOM has been used to identify future housing requirements in 70 local authority areas for both private and public sectors clients. It makes use of the industry-leading PopGroup suite of software which was developed by the Local Government Association. This provides a robust and transparent means by which the housing implications associated with a range of inputs can be tested. These inputs include:
1 Fertility and mortality rates;
2 Domestic and international migration trends;
3 Household headship rates;
4 Housing vacancy rates (including second home and holiday home ownership levels);

5 Employment change; and,
6 Unemployment levels and commuting patterns.
By flexing each of these inputs in turn, it is possible to develop a range of alternative scenarios which will have a range of implications in terms of the future housing requirements. The strengths and weaknesses of data and conclusions for each assessment basis can then be considered and balanced in order to achieve an understanding of the objectively assessed requirement.

HEaDROOM provides a mechanism by which key challenges can be understood and competing objectives assessed. It offers an understanding of the role of housing in ensuring that the future population of a locality can be accommodated in a manner that respects environmental limitations and strategic aspirations, but which also recognises the extent to which housing plays a crucial role in securing the economic well-being of the local area. In so doing, it has the capacity to provide the detailed evidence that is required to inform sound planning decisions, based upon an appreciation of the (potentially competing) policy requirements and the local nature of the relevant area.

The HEaDROOM framework has been employed as part of this study in order to inform the assessment of the work that has been undertaken to date and the identification of a preferred set of housing requirement figures going forwards. By modelling a number of alternative trend and economic change-based scenarios, this report sets out the housing, economic, demographic and labour force impacts of different levels of housing growth in order to help the decisionmaking process that must inform the preparation of the JCS. The use of different scenarios provides the basis for strength of assessment and clarity regarding the objective assessment of housing need.

Local Background

The JCS "Developing the Preferred Option Consultation Document" was published for consultation in December 2011. This drew upon a large body of evidence that had been prepared by Gloucestershire County Council and by the JCS authorities including the following key reports:

1 Gloucestershire Local Projection 2010 Report - prepared in June 2010 by the Research and Intelligence Team within the Chief Executive's Support Unit at Gloucestershire County Council;

2 Housing Trend Analysis \& Population and Household Projections Report commissioned by Gloucestershire County and District Planning Authorities and prepared in May 2011 by the Research and Intelligence Team within the Chief Executive's Support Unit at Gloucestershire County Council; and,

3 JCS Housing Background Paper, November 2011.
The Gloucestershire reports were prepared on a County-wide basis and provide population and household information for each of the six local authorities and for the County as a whole. The June 2010 report sets out projections, based upon an analysis of past trends whilst the May 2011 report provides more detailed past trend analysis and an employment-based projection.

The Housing Background Paper which was published by the three councils translates the population and household projections to a dwelling requirement figure and also rebases the figures to 2011, to reflect the revised JCS period of 2011 to 2031, taking account of past under- and over-supply of housing between 2006 and 2011.

The work that was undertaken by Gloucestershire County Council was based on locally-derived population evidence that had the capacity to test the impact of future policies on future population changes. This is in contrast to the Office of National Statistics' (ONS) Sub National Population Projections (SNPP) which are policy neutral and do not consider the impact of specific interventions. However, in practice, the projections that informed the JCS were based on locally-derived past trend evidence and therefore did not consider policy implications.

Conclusions of approach undertaken to date

Although there are a number of matters of concern in relation to the detailed methodology that has been adopted by Gloucestershire County Council, its local population and household projections appear to be generally robust.

However, this analysis was undertaken in 2010 and relied on the data that was available at that time and which has now been superseded. The approach that has been taken by Gloucestershire County Council in respect of the translation from households to dwellings is not considered to be reliable due to discrepancies with the data that has been applied.

It is important that the JCS is informed by the most up-to-date information. For this reason, the data contained within the Gloucestershire Local Projection 2010 report is now not considered to be appropriate as an evidence base to the JCS. Unfortunately, due to reduced resources, Gloucestershire County Council is no longer undertaking its own demographic projections and so it is necessary to rely upon alternative sources. ONS and CLG data represent a useful and reliable starting point for the assessment of demographic trends and dwelling requirements.

In the light of these matters, further analysis was appropriate to take account of the most recent data releases and also to reflect current best practice in undertaking demographic and housing projections.

The Components of Housing Need

The NPPF requires consideration to be given to housing needs and supply in ensuring that "Local Plan(s) meet the full, objectively assessed needs for market and affordable housing". In so doing, it is important to distinguish these two elements as follows:

1 Housing needs: how many houses do we need in the local area?
 2 Housing supply: how / where can these houses be delivered?

The implication of this is that housing supply matters should be taken into consideration following the identification of local needs. They should not be used to inform the assessment of needs and any Local Plan that seeks to do so is unlikely to be found sound.

Housing requirements in any area are affected by the following inter-related considerations:

1 Demographic: the change in the number and profile of the people that will live in the local area;

2 Housing: the number of dwellings that are required to accommodate the changing population size and structure; and,
3 Economic: the number of workers and jobs that can be supported by the local population.

The relationship between these factors is complex and each can shape housing demand. As such, the implication of changes to each need to be taken into account when seeking to identify the objectively assessed local housing need. In the context of the NPPF objectives, and in the interests of reflecting the JCS vision to "foster growth in the local economy and provide sufficient homes...", it is particularly important to understand how alignment can be achieved between economic and housing objectives.

The key variables that should be tested as part of the process of objectively assessing need are summarised below:

The identification of an objectively assessed level of housing need is dependant upon a series of assumptions relating to each of these broad factors, all of which must be reasonable and clearly articulated. The consultation responses to the JCS Preferred Option document have highlighted the existence of a series of strongly held misconceptions which, if not addressed, could form the basis by which the reasonable assumptions that have informed the objective assessment of housing need for the JCS area might be challenged.

The misconceptions that have been expressed through the consultation process are summarised below through an exploration of the things that the planning process and the JCS in particular can and cannot control:

Page 62

Page 63

Assessment of Housing Requirements : Executive Summary
Table 2.1 Common misconceptions - the things that the JCS cannot control
The contribution of natural change to housing requirements.
Whether the housing needs of migrants should be accommodated; whether the needs of high level of in-migration of older people
into the JCS area could be reduced by controlling the supply of housing; and the extent to which the out-migration of younger people
is creating local economic difficulties.
The JCS area enjoys a high quality of life and, as such, is a popular destination for those moving from other parts of the country,
in any area and whilst it can be affected by improvements in healthcare provision, it is not something that the town planning
especially for their retirement. The evidence shows that international migration accounts for a very small proportion of total
migration into the JCS area.
It has been suggested that constraining the supply of housing would reduce in-migration into the JCS area. This is not the case as
many older in-migrants are likely to be better able to compete in the housing market and therefore migration levels are not likely to
be constrained by housing supply. Rather, this action would have a disproportionate impact upon local and younger people who
are typically less able to compete in the market.
The planning system can therefore influence net migration although the impact of this is most likely to be felt by local younger and
working age people rather than the older people that are moving in from elsewhere.
Assessment of Housing Requirements : Executive Summary
The role of household formation in influencing dwelling requirements.
An understanding of household formation provides a basis by which an understanding of population change might be translated to
an appreciation of household growth and dwelling needs.
Household formation rates are shaped by a range of social and demographic factors. Even were population to remain static, the
number of households (and hence, dwelling need) would be expected to increase over time. Even if the population were to remain
static, it is not within the scope of the JCS to seek to shape households formation. Any efforts to do so through controlling the
supply of dwellings will not be successful and will serve to exacerbate economic imbalances and difficulties because:

Page 65

Assessment of Housing Requirements: Executive Summary

	The effect of the macro-economy upon the JCS area and the difficulties that exist in being able to forecast future changes at this time.
	nomic trends can have a significant bearing upon demographic, economic and housing factors within the JCS area. the Government has repeatedly expressed its desire for the planning system to contribute towards growth, this is not control of the JCS. In spite of this, the vision for the area is to enhance the economic well-being of the area and this in an increased level of wealth. This is in line with the NPPF and, as such, the JCS should not plan for stagnation or that would not be sustainable and would not be in the best interests of local people or local communities. is that over the next 20 years, the population of the JCS area will increase by both natural change and net inThe plan cannot do anything to turn this tide and should plan for the likely housing requirements that will emerge. sion has had a large impact upon Cheltenham, Gloucester and Tewkesbury but the JCS should plan for growth, g that the recession and its lasting impacts will not continue forever and that growth will eventually occur. The plan spond to this and help to stimulate, shape and direct growth when it does happen.
	ation of these considerations is that the actual level of housing need is not something that the JCS can control. The res local authorities to objectively assess their housing need and also to ensure that this can be met in full. In seeking s requirement, local authorities must provide clear evidence regarding the level of need that exists. Such evidence informed by reasonable assumptions and should not be affected by concerns regarding the potential housing supply.
By way of response to these matters, it is also instructive to understand the things that the planning process and the JCS particular can influence:	
The things that the JCS can influence	
Housing Supp	The Local Planning Authority can control housing supply by ensuring sufficient land is allocated for housing during the plan making process to ensure the housing requirement can be met over the plan period. An under-supply of housing can lead to more planning appeals being won given National Policy expectations for Local Authorities to have a deliverable housing supply. Un-planned development through planning appeals will result in ad-hoc growth which

Assessment of Housing Requirements : Executive Summary

	cannot be strategically planned for in comparison to allocated growth with can.
Alignment between Jobs and Housing	The Local Planning Authority can influence the alignment between jobs and housing by controlling the amount of housing and employment space that is delivered over the plan period. On the basis of economic forecasts, the Local Planning Authority can suitably plan for new housing growth which will ensure the future workforce have houses to live in.
Commuting	The Local Planning Authority can influence commuting patterns through the planned development of jobs and housing in the area. Creating more jobs through employment development will influence higher in-commuting as the workforce is likely to travel from further afar for better opportunities. If the Planning Authority however reflects future job creation through the development of housing, it will reduce commuting numbers. Providing sufficient housing in the area will result in the workforce being able to better compete in the local housing market and therefore reside closer to their place of work.

Revised Assessment of Housing Need

Our review of the work undertaken by Gloucestershire County Council and the JCS team has identified a need to update the projections in order to take account of the latest available information. However, given that the County Council is no longer undertaking its locally derived projections, it is necessary to rely on alternative sources.

In the light of this, our assessment has considered a number of alternative demographic and economic based - scenarios. These take account of the latest data and best practice in order to inform an understanding of the objectively assessed housing need.

The following key scenarios were tested through this study:

Table 3.1 Summary of Assessment Scenarios

	Office of National Statistics ONS 2010 SNPP	Reflects the most recent 2010-based ONS SNPP by applying the same core assumptions on natural change and migration. Applied 2008-based household projections and an allowance for second homes and vacancies.
	Department for Communities and Local Government (CLG) 2008 household projections	Considers dwelling requirements implied by 2008-based CLG household projections by setting these alongside an allowance for second homes and vacancies.
	Past trend migration	Considers the impacts of projecting forward longer term migration rates (domestic: 19992010; international: 2001-8) - in contrast to the SNPP which models 5 year past trends.
	Natural change	Considers the housing needs that would be associated with the JCS authorities providing only for the pressures from its internal population in terms of natural change, an ageing population and changing social (household formation and dwelling occupancy) patterns.
	Domestic migration	Considers the implications of there being no international in or out migration in the future (i.e. so that there would only be domestic migration) in order to test the magnitude of this component

	Tests the demographic changes that would be associated with the level of future employment growth identified by the Cambridge	
Cambridge	Econometrics	Econometrics baseline scenario (27,000 jobs between 2011 and 2031) and considers the number of dwellings that would be required to accommodate that population change.
Projection	Tests the demographic changes that would be associated with the level of future employment growth identified by the Cambridge	
Experian Projection	Econometrics baseline scenario (15,500 jobs between 2011 and 2031) and considers the number of dwellings that would be required to accommodate that population change.	

Bearing in mind that the employment impacts of each scenario will depend upon assumptions relating to changing commuting and unemployment levels, sensitivity testing of the options was undertaken in order to consider the implications of alternative rates.

Demographic Assessment

A series of demographic-led scenarios have been tested in order to consider what alternative projections of natural change, migration and headship rates will mean for future levels of household growth and dwelling requirements.

The graph below sets out the total number of dwellings required across the JCS area over the period from 2011 to 2031 as a result of each of these demographic-based scenarios. These are set against the Scenario C contained within the JCS ‘Developing the Preferred Option’ Consultation Document for the purposes of comparison, albeit that it should be noted that this scenario $(36,850)$ is based upon data that has now been superseded.

Figure 3.1 JCS Dwelling Requirement, 2011-2031

Four of the scenarios outlined above point towards a similar housing requirement of around 30,000 dwellings over the JCS period. This reflects the components of change that are anticipated by the latest ONS Sub National Population Projections and represents a slight increase above past trends between 2001 and 2012. However, in considering past housing delivery, it should be noted that both Cheltenham and Tewkesbury have suffered from a persistent under-delivery such that the number of completions between 2001 and 2012 amounted to only 75% of the then total requirement (1,710 p.a.). Applying past completion rates to project future housing requirements would serve only to perpetuate historic supply difficulties.

The zero migration scenario is not considered to be realistic as migration is, and will remain, a crucial component of demographic change. However, it is important in highlighting the reality that the need for housing is not solely a function of migration. Rather, because of changes in the formation of new households and in the way that dwellings are consumed, more houses will be required to meet the increasing demand from within the existing population.

Crucially, none of these scenarios take account of the economic implications. This raises significant concerns regarding the coherence of the JCS in terms of its alignment between the provision of jobs and new housing. The implication of this is that the CLG 2008 and ONS 2010 scenarios would both result in 11,700-14,100 and 9,100-11,400 additional jobs (respectively) being filled by those living within the JCS area whilst the domestic migration scenario would result in 6,200-8,500 additional jobs being filled by those living within the JCS area. By way of comparison, forecasts that were prepared by Experian indicated that an additional 15,500 jobs are likely to be created within the JCS area between 2011 and 2031 whilst forecasts that were prepared by

Cambridge Econometrics to inform the JCS indicated that an additional 27,000 jobs are likely to be created within the JCS area between 2011 and 2031.

The specific distribution of housing need associated with each of these demographic scenarios is set out below.

Figure 3.2 Distribution of demographic-based housing requirements (2011-2031)

Source: NLP Analysis of PopGroup Outputs

Economic Assessment

Reflecting the vision to foster growth within the local economy alongside the Government drive for growth which is clearly stated within the NPPF, the jobsbased scenarios consider the level of demographic and housing growth that would be required to support and sustain the level of economic growth that has been identified as likely to be achieved within the JCS area. This is important in ensuring that the JCS is internally consistent in respect of the provision that it makes for employment change and housing growth.

Employment growth can be accommodated through a number of mechanisms:
1 Increased levels of economic activity;
2 Reduced unemployment;
3 Reduced net out-commuting; and,
4 Increased net in-migration.
It is likely that local job creation will cause economic activity levels to rise, unemployment to fall and net out-commuting to fall. A series of sensitivity tests have been applied in order to consider these matters in detail.

Two sets of economic forecasts were prepared - by Cambridge Econometrics and Experian Business Strategies. The CE forecasts identified that 27,000 new
jobs would be created within the JCS area between 2011 and 2031 whilst the Experian forecast identified that 15,500 new jobs would be created within the JCS area over this same period.

Source: NLP Analysis of PopGroup Outputs
3.16 The specific distribution of housing need associated with the employment-led scenarios is set out below.

Figure 3.4 Distribution of jobs-based housing requirements

Moving towards the JCS

Bringing the Evidence Together

Whilst it is useful to compare each of the scenarios, careful regard should be given to:

1 Their economic implications;
2 Their impact upon the demographic structure of the JCS area; and,
3 The reliance upon migration to achieve the necessary level of population change and the implications associated with any such net inflow.

Regard should also be given to the deliverability of different housing requirement figures, judged against past trend completions, land availability and viability factors, although this consideration should not serve to influence the objective assessment of housing need.

Taking account of these matters, the following conclusions can be drawn from evidence derived from each scenario.

1 The zero migration scenario ignores the reality that migration will continue to happen within the JCS area and that it will be beneficial for the area in terms of its social and economic well-being.

2 Reliance only upon natural change would result in a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 55\% between 2011 and 2031, such that this age cohort would account for 20% of the population in 2031, compared to 13% in 2011. By contrast the number of working age people is expected to fall by 2.5% over the same period.

3 Whilst the demographic scenarios would result in an increase in the working-age population and would ensure that an increase in employment could be sustained, they fail to reflect the level of growth that is anticipated and, as such, would compromise the deliverability of the economic vision for the area. In so doing, it would also result in social implications through the creation of an increasingly aged population and a decline in the available workforce.

4 The demographic-based scenarios therefore fail to take account of the economic aspirations for the area. If used to inform JCS policy, this would result in a misalignment between jobs and housing, to the detriment of the soundness of the JCS and the health of the local economy.

5 The employment-led scenario would provide the basis for an integrated JCS. The delivery of sufficient housing for the (expanding) workforce is essential to ensuring that economic growth can be attracted and sustained. Recognition of the housing need associated with the employment forecasts would accord with the objectives of the NPPF and the JCS vision.

6 Recognising the differences that exist between the different economic forecasts, selection of the final figure will depend upon establishing the preferred level of employment growth for the JCS area. The identification of the number of new jobs that are to be sought through the JCS will be based upon the identification of policy aspirations relating to the promotion of key sectors in accordance with the economic and spatial vision for the area. This work remains to be undertaken and may result in a housing requirement figure that falls outside of the range set out above.

7 Increasing the housing the supply will enable a larger proportion of people to be more able to compete in a broader housing market. A more balanced population increase will then help facilitate and avoid the loss of younger people and thereby support the increase in older persons in the future.

Despite being considered within the context of a JCS, it is important that each Local Authority seeks to meet their individual requirement figure in the first instance, rather than assuming that the duty to cooperate would allow it to be met elsewhere. Whilst the reality is that growth is likely to be strategically planned across the three authority areas, the basis for the identification of potential housing sites should be to seek to locate them where the need exists. There must be a duty to cooperate in order to achieve housing targets but growth must be evenly distributed to ensure the development balanced communities across the JCS area.

Based upon the economic-led scenarios, the housing need for each of the JCS authorities is set out below. This does not take account of issues arising as a result of the duty to co-operate but rather reflects the specific requirements for each of the three local authority areas:

Table 4.1 Housing Requirement for each Local Authority Area

LA Area	Housing Need, 2011-2031
Cheltenham	$12,650-15,900$
Gloucester	$10,550-13,200$
Tewkesbury	$9,300-14,100$
TOTAL	$32,500-43,500$

Source: NLP Analysis of PopGroup Outputs
These therefore represent the policy area requirements to be provided for either in each local authority area or through the application of the duty to co-operate. Key factors to be taken into account when seeking to identify how the required level of housing is to be accommodated include:

1 Land availability in each local authority area;
2 Environmental constraints;

Testing the Options

Increasing supply of housing...

The NPPF requires local authorities to "boost significantly the supply of housing". The average rate of completions between 2001 and 2012 was 1,400 per annum - equivalent to a total supply of 28,000 dwellings over 20 years. Within this time there was a period of greater delivery, as illustrated by the fact that the peak supply was 1,900 units between 2005 and 2009 - equivalent to a total supply of 38,000 dwellings over 20 years. If achieved, the emerging future need would represent a boost in supply, as anticipated by the NPPF.

... Including affordable housing

On the basis that a proportion of the total need would be met as affordable homes, the jobs-led approach would be important in increasing the supply of affordable housing and thereby to help address this important component of housing need.

Contributing towards improved sustainability

The NPPF emphasises the importance of achieving sustainable development. The employment-led scenario would contribute towards the social and economic components of sustainability whilst the supply side assessment would contribute towards the environmental component:

Benefits of development

The recommended level of housing within the JCS area would generate a range of benefit for the area, as follows:

1 Economic Boost, including:
i New Homes Bonus and ongoing Council Tax receipts per annum;
ii Gross Value Added (GVA) associated with the construction phase;
iii An additional annual spending by new residents per annum; and,
iv Community Infrastructure Levy investment in communities.
2 Substantial investment and income to counter budget cuts.
3 Alignment between jobs and housing to deliver the economic vision.
4 Improved supply of housing to reflect demand.
5 Enhanced supply of affordable housing.
6 Potential to stem the outflow of working age persons and to achieve a balanced community - avoiding the emerging economic time-bomb.

7 Delivery of local community benefits.
8 Delivery of a sound JCS.
9 Ability to control the scale and distribution of development.

Moving toward a Preferred Option JCS

In seeking to progress towards the preparation of a sound JCS, the following key actions are required:

1 The importance of making the necessary decisions and delivering a JCS.
2 The importance of distinguishing between housing needs and supply:
i Establishing the "objectively assessed housing need" and presenting it within a sound evidence base; and,
ii Understanding how to meet the housing need in a sustainable manner.

3 Ensuring a coherent strategy which is consistent in its ability to achieve the stated vision and to meet the requirements of the NPPF.

4 Ensuring that the duty to co-operate is fully addressed, recognising that Tewkesbury may be required to accommodate some Cheltenham and Gloucester related growth but that Cheltenham and Gloucester should seek to maximise capacity within their administrative areas in the first instance.

E Applications \＆Appeals
密 Climate Change \＆Sustainability
of Community Engagement
次：Daylight \＆Sunlight
澥 Economics \＆Regeneration
明边 Environmental Assessment
Expert Evidence
K GIS \＆Graphics
\square Heritage
© Property Economics
Q Site Finding \＆Land Assembly
Ch Strategy \＆Appraisal
\％Urban Design

Cardiff

02920435880

Leeds

01133971397
London
02078374477
Manchester
01618376130
Newcastle
01912615685
nlpplanning．com

Page 79

Assessment of Housing Needs

Gloucester, Cheltenham \& Tewkesbury Joint Core Strategy

September 2012
30919/GW/SC

Page 80

This document is formatted for double sided printing.
© Nathaniel Lichfield \& Partners Ltd 2012. Trading as Nathaniel Lichfield \& Partners.
All Rights Reserved.
Registered Office:
14 Regent's Wharf
All Saints Street
London N1 9RL
All plans within this document produced by NLP are based upon Ordnance Survey mapping with the permission of Her Majesty's Stationery Office. © Crown Copyright reserved. Licence number AL50684A

Contents

1.0 Introduction 2
Context 2
HEaDROOM 3
Structure 5
2.0 Review of Work Undertaken to Date 6
Evidence Base 6
Joint Core Strategy scenarios 8
Representations 9
$3.0 \quad$ Evidence for a Gross Housing Requirement 10
Demographic Analysis 11
Economic Analysis 26
Summary of Scenarios 35
$4.0 \quad$ Testing the Options 40
Meet ambitions regarding increasing supply 40
Accord with advice on affordability 40
Demographic profile 41
Sustainable pattern of development, balancing the needs of the economy and minimise need for commuting 41
Market capacity and deliverability 42
Joined-up policy making 43
Distribution of growth 44
$5.0 \quad$ Conclusion 45
Housing Needs and Housing Supply 45
The Objectively Assessed Housing Need 47
Towards the JCS: Matters to Consider 49

Page 82

Figures

Figure 1.1

 NLP HEaDROOM Framework 5Figure $2.1 \quad$ Components of Housing Requirement Analysis 7
Figure 3.1 Demographic Change in JCS Area (2010 SNPP-based Scenario) 13

Figure $3.2 \quad$ Changing Population Composition in JCS Area (2010 SNPP-based Scenario) 13
$\begin{array}{lll}\text { Figure } 3.3 \quad \text { Average Domestic Migration Rates, 1999-2010 } & 15\end{array}$
$\begin{array}{lll}\text { Figure } 3.4 \quad \text { Average International Migration Rates, 2001-2008 } & 16\end{array}$
Figure $3.5 \quad$ Demographic Change in JCS Area (Past Trend Migration Scenario) 17
Figure 3.6 Changing Population Composition in the JCS Area (Past Trend Migration Scenario) 18
Figure $3.7 \quad$ Demographic Change in JCS Area (Zero Migration Scenario) 20
Figure 3.8 Changing Population Composition in the JCS Area (Zero Migration Scenario) 21
Figure $3.9 \quad$ Demographic Change in JCS Area (Domestic Migration Scenario) 23
Figure 3.10 Changing Population Composition in the JCS Area (Domestic Migration Scenario) 24
Figure $3.11 \quad$ Potential Dwelling Requirement, 2011-2031 25
Figure 3.12 Demographic Change in JCS Area (CE Scenario) 30
Figure $3.13 \quad$ Changing Population Composition in the JCS Area (CE Scenario) 31
Figure $3.14 \quad$ Demographic Change in JCS Area (Experian Scenario) 33
Figure $3.15 \quad$ Changing Population Composition in the JCS Area (Experian Scenario) 34
Figure 3.16 Dwelling Requirement, 2011-2031 35
Figure $3.17 \quad$ Dwelling Requirement by Local Authority, 2011-2031 36
Figure 5.1 Population Change in the JCS Area, 1991 and 200951
Figure 5.2 Household Change in the JCS Area, 1991 and 200952
Figure 5.3 Demographic Structure in Cheltenham, Gloucester and Tewkesbury, 201052
Figure $5.4 \quad$ Change in Population Structure, 1992-2010 53
Figure 5.5 Employment within the JCS Area, 2001-2010 60
Figure 5.6 Number of Economically Active Persons within JCS area, 2001-2010 61
Figure 5.7 Economic Activity Levels in Gloucestershire, 2010-2011 61
Figure $5.8 \quad$ Employment Change, 1981-2031 76
Figure $5.9 \quad$ Employment Change, 1997-2031 77
Figure $5.10 \quad$ Total Fertility Rates in JCS Area, 2010-2031 80
Figure $5.11 \quad$ Standard Mortality Rates in JCS Area, 2010-2031 80
Figure $5.12 \quad$ Past housing completions in Cheltenham, Gloucester and Tewkesbury 94
$\begin{array}{ll}\text { Figure } 5.13 & \text { The Difference between Housing Completions and Requirements across Cheltenham, Gloucester and } \\ & \text { Tewkesbury Joint Authority Area }\end{array}$
Figure $5.14 \quad$ Cheltenham Housing Completions against Identified Housing Requirement 95
Figure 5.15 Gloucester Housing Completions Against Identified Housing Requirement 96

Tables

Table 3.1
Table 3.2
Table 3.3
Table 3.4

Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 3.10
Table 3.11
Table 3.12
Table 3.13
Table 4.1
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.8
Table 5.9
Table 5.10
Table 5.11
Table 5.12
Table 5.13
Table 5.14
Table 5.15
Table 5.16
Table 5.17

CLG 2008-based Household Projections Scenario Headline Outputs 12

ONS 2010-based SNPP Projections Scenario Headline Outputs12
Migration Inputs into Demographic Scenarios 16
Comparison between Migration Inputs into Past Trend Migration Scenario and other Demographic Scenarios16
Past Trend Migration Scenario Headline Outputs 17
Zero Migration Scenario Headline Outputs 19
Domestic Migration Scenario Headline Outputs 22
Employment Sensitivity Tests 27
Employment Growth, 2011-2031 28
CE Scenario Headline Outputs 29
Employment Growth, 2011-2031 32
Experian Scenario Headline Outputs 32
Summary of Scenarios 35Housing Requirement for each Local Authority Area - Economic Led 44
Housing Requirement for each Local Authority Area 49
International Migration 2009-2010 54
Commuting Levels, expressed as LF Ratios 59
Assessment of Baseline Population 62
Assessment of Natural Change 63
Assessment of Domestic Migration 65
Domestic Migration Flow into JCS Area (\% of total flow) 67
Domestic Migration Flow from JCS Area (\% of total flow) 67
Migration Between Comparator Cities and the Rest of UK 68
Assessment of International Migration 69
Assessment of Headship Rates 70
Assessment of Population Not in Households 71
Assessment of Vacancy / Second Homes 72
Second Home and Vacancy Rate in the JCS Area (October 2011) 72
Vacancy Rate in the JCS Area (2011) 73
Assessment of Unmet Housing Demand 73
Assessment of Employment Projections 75
Table $5.18 \quad$ Key assumptions use to inform the Experian UK Regional Planning Service 76
Table 5.19 Housing Supply Buffer Requirements 97
Table 5.20 Summary of Scenario Outputs: Cheltenham 99
Table 5.21 Summary of Scenario Outputs: Gloucester 100
Table 5.22 Summary of Scenario Outputs: Tewkesbury 101

Page 86

Appendices

Appendix 1	Context to the JCS Area
Appendix 2	Review of Work Undertaken to Date
Appendix 3	Inputs into HEaDROOM Modelling
Appendix 4	Review of Representations
Appendix 5	Housing Delivery in the JCS Area
Appendix 6	Summary of Results for Each Local Authority
Appendix 7	PopGroup Output Sheets

Page 88

Introduction

Nathaniel Lichfield \& Partners (NLP) was appointed by Gloucester City Council, and Cheltenham and Tewkesbury Borough Councils to undertake an independent assessment of housing requirements for the Joint Core Strategy (JCS) area.

The key purpose of this study is to provide further evidence to support the emerging JCS by:
1 Verifying the approach that has been undertaken to date in respect of the Local Projections and Household estimates and the translation of these figures to dwelling requirements;

2 Reviewing the representations that have made in respect of housing strategy matters and providing commentary and advice on the ways in which these might impact upon the assessment of market and affordable housing requirements;

3 Demonstrating the housing requirements for the overall JCS area, at an individual local authority area level, and for the Cheltenham and Gloucester Wider Policy Areas; and,

4 Providing a clear understanding of the impact of the NPPF upon housing requirements for the JCS area.

Context

The context to this study is the continuing reform of the planning system to deliver on localism. This presents a major opportunity for local government to seize the agenda for its localities, but with it comes new responsibilities that run in tandem with an unprecedented tightening of public spending and the reality of continued economic difficulties over the next few years.

On 6 July 2010, the Secretary of State for Communities and Local Government expressed his intention to revoke the Regional Strategies such that they would no longer form part of the statutory development plan. Following a period of uncertainty caused by various legal challenges, the enactment of the Localism Bill provided the legislative platform by which Regional Strategies will be formally abolished.

The implication of the eventual removal of centrally-imposed housing requirements is that responsibility for establishing housing requirement figures for Local Plans now falls to local councils. The NPPF echoes this requirement. In seeking to "boost significantly" the supply of housing, it requires local planning authorities to "use their evidence base to ensure that their Local Plan meets the full, objectively assessed needs for market and affordable housing in the housing market area". It also emphasises that local planning authorities should continue to demonstrate a 5 -year housing land supply - which is to be supplemented by an additional buffer of 5% to ensure choice and competition

Page 89

in the market or, where there has been a record of persistent under-delivery of housing, an additional buffer of 20%. The NPPF requires local planning authorities to evidence and defend their local housing requirements at examination. This highlights the importance of ensuring that the housing need figures that are set out within Local Plans are soundly rooted in a robust evidence base. A failure to meet this need may result in a Local Plan being found to be unsound.

It is important to distinguish these two elements as follows:

1 Housing needs: how many houses are needed in a local area?
 2 Housing supply: how / where can these houses be delivered?

The implication of this is that housing supply matters should be taken into consideration following the identification of local needs. They should not be used to inform the assessment of needs and any Local Plan that seeks to do so is unlikely to be found sound.

HEaDROOM

At the present time there is no commonly agreed approach for local planning authorities to follow in setting local housing requirements, beyond the principles established in national policy. In response, NLP has developed an analytical framework for defining the quantum of housing that should be planned for through Local Development Frameworks. This framework (HEaDROOM) provides the basis for assembling and presenting evidence on local housing requirements in a transparent manner.

A central component of this framework is an understanding of the role of housing in ensuring that the future population of a locality can be accommodated (taking account of the dynamics of housing markets and other material factors) and the extent to which housing plays a crucial role in securing the economic growth and housing needs of a local area.

Page 90

HEaDROOM makes use of the industry-leading PopGroup suite of software ${ }^{1}$ which was developed by the Local Government Association and is directly used by over 70 local authorities in the UK and by the Department for Communities and Local Government. This provides a robust and transparent means by which the housing implications associated with a range of inputs can be tested. These inputs include:

1 Fertility and mortality rates;
2 Domestic and international migration trends;
3 Household headship rates;
4 Housing vacancy rates (including second home and holiday home ownership levels);

5 Employment change; and,
6 Unemployment levels and commuting patterns.
By flexing each of these inputs in turn, it is possible to develop a range of alternative scenarios which will have a range of implications in terms of the future housing requirements. The strengths and weaknesses of data and conclusions for each assessment basis can then be considered and balanced in order to achieve a much narrower range of housing numbers targets.

HEaDROOM provides a mechanism by which key challenges can be understood and competing objectives assessed. It offers an understanding of the role of housing in ensuring that the future population of a locality can be accommodated in a manner that respects environmental limitations and strategic aspirations, but which also recognises the extent to which housing plays a crucial role in securing the economic well-being of the local area. In so doing, it has the capacity to provide the detailed evidence that is required to inform sound planning decisions, based upon an appreciation of the (potentially competing) policy requirements and the local nature of the relevant area.

The HEaDROOM framework is summarised below:

[^1]
Page 91

Figure 1.1 NLP HEaDROOM Framework

1.15 It is important to note that HEaDROOM is dependent upon the availability of a wide range of existing data sources. Many of the modelled assumptions take account of datasets (particularly those demographically-driven) that are updated annually. It will be important to keep the analysis under review and to take account of emerging information as it arises.

Structure

This report is structured as follows:

- Review of the work that has been undertaken to date to inform the emerging JCS (Chapter 2.0);
- Evidence for a gross housing requirement, taking account of the latest data and best practice relating to housing, economic and demographic factors (Chapter 3.0);
- Appraisal of the identified level of housing need against a range of indicators (Chapter 4.0);
- Conclusion (Chapter 5.0).

Page 92

Review of Work Undertaken to Date

The JCS ‘Developing the Preferred Option" consultation document was published for consultation in December 2011. This drew upon a large body of evidence that had been prepared by Gloucestershire County Council and by Gloucester City, Cheltenham Borough and Tewkesbury Borough Councils. The Housing Background Paper sought in particular to draw this evidence together in order to establish the identified housing scenarios.

Consideration should now be given to whether this evidence is sufficient to meet the NPPF requirements to boost significantly the supply of housing and for local planning authorities "to use their evidence base to ensure that their Local Plan meets the full, objectively assessed needs for market and affordable housing in the housing market area". This section reviews the evidence that informed the consultation document in order to appraise whether any further analysis is required to enable the JCS team to progress towards a sound Core Strategy.

Evidence Base

The JCS housing evidence base comprises the following key reports:
1 Gloucestershire Local Projection 2010 Report - prepared in June 2010 by the Research and Intelligence Team within the Chief Executive's Support Unit at Gloucestershire County Council;

2 Housing Trend Analysis \& Population and Household Projections Report commissioned by Gloucestershire County and District Planning Authorities and prepared in May 2011 by the Research and Intelligence Team within the Chief Executive's Support Unit at Gloucestershire County Council; and,
3 JCS Housing Background Paper, November 2011.
The Gloucestershire reports were prepared on a County-wide basis and provide population and household information for each of the six local authorities and for the County as a whole. The June 2010 report sets out projections, based upon an analysis of past trends whilst the May 2011 report provides more detailed past trend analysis and sets out a series of employment-based projections. The projections contained within these reports were derived from the PopGroup suite of software.

The Housing Background Paper which was prepared by Gloucester City, Cheltenham Borough and Tewkesbury Borough Councils translates the population and household projections to a dwelling requirement figure and also rebases the figures to 2011, to reflect the JCS period of 2011 to 2031 and taking account of past under- and over-supply of housing between 2006 and 2011.

Page 93

The locally derived analysis that was undertaken by Gloucestershire County Council incorporated each of the components summarised below. In this section, we consider the approach that was adopted by Gloucestershire County Council and by Gloucester City, Cheltenham Borough and Tewkesbury Borough Councils in translating the household projections to dwelling requirements.

Figure 2.1 Components of Housing Requirement Analysis

A full analysis of the work that has been undertaken to date, in respect of each of the matters detailed above, is contained within Appendix 2. This concludes that although there are a number of matters of concern in relation to the detailed methodology that was adopted by Gloucestershire County Council, its local population and household projections appear to be generally robust. However, this analysis was undertaken in 2010 and relied on the data that was
available at that time and which has now been superseded. Although the approach that was adopted in the translation of households to dwellings was robust, the analysis that was undertaken is not considered to be reliable due to discrepancies with the data that was applied.

It is important that the JCS is informed by the most up-to-date information and for this reason, the information contained within the Gloucestershire Local Projection 2010 report is no longer considered to be appropriate as an evidence base to the JCS. Unfortunately, due to reduced resources, Gloucestershire County Council is no longer undertaking its own demographic projections and so it is necessary to rely upon alternative sources. However, recent changes in the methodological approach that is adopted by ONS and CLG represents a useful and reliable starting point for the assessment of demographic trends and dwelling requirements. Gloucestershire County Council has acknowledged that it is more comfortable with ONS data following the recent changes in its methodological approach. It therefore confirmed that ONS data represents the most reliable basis for any future modelling exercises.

In the light of these matters, further analysis is necessary to take account of the most recent data releases and also to reflect current best practice in undertaking demographic and housing projections.

Joint Core Strategy scenarios

The analysis undertaken by the JCS team informed the preparation of three of the four scenarios contained within the JCS Preferred Option Consultation Document:
1 Scenario C (36,850 units) represents the local projection of housing need that was identified through the analysis undertaken by GCC and the JCS team;
2 Scenario B (33,200 units) represents a 10% reduction from the local projection of housing need and equates to the level of delivery between 2006 and 2011; and,
3 Scenario D $(40,500)$ represents a 10% uplift on the local projection of housing need and equates to the level of delivery between 2006 and 2008.

These scenarios were rooted in the analysis that was undertaken by GCC and by the JCS team which is considered in some detail above and set out in full at Appendix 2. In view of the findings of our analysis, we have undertaken a further investigation of the housing requirement within the JCS area.

In addition, the Preferred Option Consultation Document also included a supplyled scenario (A) which sought to base the requirement figure upon the capacity of the urban area and the assumption of 2,400 units in the wider rural parts of Tewkesbury Borough. Such an approach is not robust as it fails to recognise the distinction between housing requirements and housing supply and does not reflect the level of housing requirements that exist in the area. As such, it is

Page 95

not considered that it would be accepted as sound by the Examination Inspector.

Representations

As part of this study, we have undertaken a detailed review of representations that were made to the JCS Preferred Option consultation document. These representations raised a number of important issues and highlighted the existence of a number of misconceptions which, if not addressed, could form the basis by which the reasonable assumptions that have informed the objective assessment of housing need for the JCS area might be challenged.

A detailed response to the key issues raised by the representations is set out in Appendix 3.

Evidence for a Gross Housing Requirement

In the light of issues relating to the evidence base that was prepared by Gloucestershire County Council, NLP has applied its HEaDROOM framework to test the housing implications associated with a range of demographic, housing and economic scenarios. The purpose of this analysis has been to apply the most up to date evidence and best practice to help inform a robust indication of future housing requirements.

Official population projections are provided by ONS on a biennial basis. These project the total population, cohort population and components of change over a 25 year period on a national and sub-national basis. The most recent population projections are the 2010-based Sub National Population Projections (SNPP). Sub National Population Projections are subsequently translated to the CLG Household Projections, taking account of household headship rates and the numbers of persons that do not reside in households. The most recent household projections have a base date of 2008 and are derived from the 2008 SNPP.

The following scenarios were considered as part of this assessment:
Demographic-led scenarios:
1 CLG 2008 household projections;
2 ONS 2010 SNPP; and,
3 Past trend migration.
Economic-led scenario:
4 JCS employment-led.
In addition, we undertook a series of sensitivity tests to consider the specific implications of a number of key factors:

1 Natural change;
2 International migration; and,
3 Alternative commuting and unemployment.
The HEaDROOM framework uses PopGroup modelling which has been applied to cover the JCS period 2011 to 2031 on the basis that there is a robust baseline position for 2010. The preparation of an updated set of projections on the basis of this revised base date avoids any need to "rebase" the plan and the evidence upon which it is built.

Although Gloucester City, Cheltenham Borough and Tewkesbury Borough Councils are working together to prepare a Joint Core Strategy, they remain separate local planning authorities for the purposes of plan implementation. To this end, a separate five year housing assessment figure will be established for each area. For this reason, it is necessary to understand the dwelling requirements at a local authority and at a JCS level. In addition, it is anticipated

Page 97

that some of the Cheltenham and Gloucester related growth should, subject to capacity, be sought within settlements in Tewkesbury Borough or (in the case of Gloucester) within settlements such as Innsworth, Churchdown and Brockworth that lie on the edge of the City but within Tewkesbury Borough. The amount of Cheltenham and Gloucester-related housing that will need to be accommodated within Tewkesbury Borough will depend upon:
1 The overall housing requirements for the JCS and each individual authority area; and,
2 The capacity of Cheltenham and Gloucester to accommodate future housing growth.

Whilst this report will help to identify the objectively assessed level of housing need, it does not consider housing supply matters. This important work is to follow at a later date and will inform the final distribution of housing growth across the JCS area. The figures set out in this section therefore do not take account of the NPPF supply buffer although this matter is considered in Appendix 5.

Demographic Analysis

Whilst there is no official requirement for local authorities to take account of the SNPP and CLG household projections when preparing their housing requirements, it is prudent to do so. However, on the basis that these are policy neutral projections that set out what would happen if past trends (over the past 5 years) are repeated, it is also helpful to consider alternative approaches.

In the light of this, a series of demographic options have been tested in order to consider what projections of natural change, migration and headship rates will mean for the future levels of household growth and dwelling requirements.

CLG 2008-based Household Projections Assessment

This scenario considers the dwelling requirements implied by the 2008-based CLG household projections by setting these figures alongside an allowance for second homes and vacancies.

The key results associated with this scenario are illustrated below:

Page 98

Table 3.1 CLG 2008-based Household Projections Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	46,700	2,335
Households	30,070	1,500
Dwellings	31,200	1,560

Source: NLP Analysis of PopGroup Outputs
Key Implications: This scenario would result in an additional 46,700 people across the JCS area between 2011 and 2031. This will comprise both natural change and migration, although unlike the other demographic scenarios, migration would account for a larger proportion of the population change than natural change.

It would generate a need for 31,200 new dwellings over the JCS period between 2011 and 2031. This equates to 1,560 new dwellings per annum.

ONS 2010-based Sub National Population Projection Assessment (Baseline Scenario)

This baseline scenario mirrors the demographic change for the JCS area as projected by the most recent 2010-based ONS SNPP by applying the same core assumptions on fertility, mortality and migration. However, on the basis that the 2010-based CLG household projections have not yet been released, it considers the dwelling implications associated with the SNPP by applying the 2008-based CLG household projections alongside an allowance for second homes and vacancies which is detailed in Appendix 4. As such, it reflects the current latest data but will be subject to change when the 2010-based household projections are released, albeit that we would not expect this to significantly change the dwelling implications.

The key results associated with this scenario are illustrated below:
Table 3.2 ONS 2010-based SNPP Projections Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	44,700	2,235
Households	27,500	1,375
Dwellings	28,500	1,425
Indigenous Labour Force	7,600	380
Jobs Supported*	$9,100-11,400$	$455-570$

Page 99

* Employment range based upon different assumptions relating to reduction of unemployment levels. Existing commuting levels held steady throughout the JCS period.

Source: NLP Analysis of PopGroup Outputs
Under this scenario, the total population of the JCS area is projected to rise by 44,650 people between 2011 and 2031. This change would be driven by natural change and migration in broadly equal measure with international migration accounting for only a small proportion of the increase.

Figure 3.1 Demographic Change in JCS Area (2010 SNPP-based Scenario) ${ }^{2}$

Source: NLP Analysis of PopGroup Outputs
3.15 The projected change in the demographic composition is set out below. This shows that the number of people of retirement age (69 years) is expected to rise by over 60% whilst the number of working age people is expected to rise by just 6\% over the same period.

Figure 3.2 Changing Population Composition in JCS Area (2010 SNPP-based Scenario)

[^2]
Page 100

Source: NLP Analysis of PopGroup Outputs
$3.16 \quad$ The population change anticipated by this scenario equates to an additional 27,455 households over the JCS period, reflecting projected shifts in household composition, as applied by the CLG in their 2008-based household projections. Taking account of existing housing vacancy rates for each of the JCS authorities, an additional 28,480 dwellings would be required to accommodate these additional households between 2011 and 2031.

Applying age specific economic activity rates for each local authority area to the forecast population shows that this would increase the labour force of the area by 7,600 people over the 20 year study period (4.5\%). Taking account of alternative assumptions relating to changes in local unemployment rates over the JCS period, this increase in the number of economically active persons would support between 9,100 and 11,400 jobs ($455-570$ per annum).

Key Implications: This scenario would involve a requirement for 28,500 new dwellings over the JCS period between 2011 and 2031. This equates to 1,425 new dwellings per annum. It would support a moderate level of economic growth but significantly below past trends (1,300 jobs p.a, 2001-20103) and the rate that is anticipated by the JCS employment evidence base.

[^3]
Page 101

This suggests that adoption of this scenario would not result in a joined-up strategy and would fail to deliver upon the economic aspirations that exist for the area.

Past Trend Migration Assessment

The Sub-National Population Projections are trend based projections which consider the demographic and dwelling implications associated with the rolling forward of past trends over the last five years. However, recognising that migration levels can change over a relatively short period of time, it is useful to consider the implications of longer term migration as an input into the demographic analysis. This scenario therefore applies the following longer term migration rates:
1 Domestic Migration: Past trends between 1999 and 2010; and,
2 International Migration: Past trends between 2001 and 2008.
In both cases, the longer term past trend data was obtained from the ONS Population Estimates Unit. The specific levels of past migration that have informed this analysis are set out below ${ }^{4}$:

Figure 3.3 Average Domestic Migration Rates, 1999-2010

Source: ONS Population Estimates Unit

[^4]
Page 102

Figure 3.4 Average International Migration Rates, 2001-2008

Source: ONS Population Estimates Unit
This scenario therefore models the following migration rates which are 17% above the migration levels contained within the baseline scenario and are 4.6% below those contained in the 2008-based household projections scenario:

Table 3.3 Migration Inputs into Demographic Scenarios

	Long Term Past Trend Migration	Baseline Scenario Migration	2008-based Household Projections Scenario Migration
Domestic	16,920	17,970	17,600
International	6,840	2,322	6,400
Total	23,760	20,292	24,900

Source: ONS Population Estimates Unit / ONS Migration Statistics Unit

Table 3.4 Comparison between Migration Inputs into Past Trend Migration Scenario and other Demographic Scenarios

	LT Past Trend Migration compared to Baseline Scenario Migration	LT Past Trend Migration compared to 2008-based H'hold Projections Scenario Migration
Domestic	-5.8%	-3.9%
International	194.6%	6.9%
Total	17.1%	-4.6%

[^5]
Page 103

The broad similarity between the migration inputs into each of these scenarios accounts for the comparability of the output results.

The key results associated with this scenario are illustrated below:

Table 3.5 Past Trend Migration Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	47,100	2,355
Households	28,500	1,425
Dwellings	29,600	1,480
Indigenous Labour Force	7,800	390
Jobs Supported*	$9,600-12,000$	$480-600$

* Employment range based upon different assumptions relating to reduction of unemployment levels. Existing commuting levels held steady throughout the JCS period.

Source: NLP Analysis of PopGroup Outputs
Under this scenario, the total population of the JCS area is projected to rise by 47,080 people between 2011 and 2031. This change would be driven by natural change and migration in broadly equal measure with international migration accounting for approximately 25% of the increase.

Figure 3.5 Demographic Change in JCS Area (Past Trend Migration Scenario) ${ }^{5}$

[^6]
Page 104

Source: NLP Analysis of PopGroup Outputs
The projected change in the demographic composition is set out below. This shows that the number of people aged over 69 years is again expected to rise by over 60\% between 2011 and 2031. By contrast the number of working age people is expected to rise by 6% over the same period.

Figure 3.6 Changing Population Composition in the JCS Area (Past Trend Migration Scenario)

Source: NLP Analysis of PopGroup Outputs

The population change anticipated by this scenario equates to an additional 28,540 households over the JCS period, reflecting projected shifts in household composition, as applied by the CLG in their 2008-based household projections. Taking account of existing second home ownership and vacancy rates for each of the JCS authorities, an additional 29,611 dwellings would be required to accommodate these additional households between 2011 and 2031.

Applying age specific economic activity rates for each local authority area to the forecast population shows that this would increase the indigenous labour force of the area by 7,800 people over the 20 year study period (4.5\%). Taking account of alternative assumptions relating to changes in local unemployment rates over the JCS period, this increase in the number of economically active persons would support between 9,600 and 12,000 jobs.

Key Implications: This scenario would involve a requirement for 29,600 new dwellings over the JCS period between 2011 and 2031. This equates to 1,480 new dwellings per annum. This would support a slightly higher level of economic growth than that associated with the 2010-based SNPP but still significantly below past trends (1,320 jobs p.a, 2001-2010 according to ABI / BRES) and the rate that is anticipated by the JCS employment evidence base.

Page 105

If implemented, this scenario would also fail to deliver the economic aspirations that exist for the area and, as such, would not achieve a joined-up strategy within the JCS.

Sensitivity Tests

Having considered the housing requirements associated with the core demographic scenarios, it is also helpful to test the sensitivity of the projections to changes in key migration factors. This is intended to demonstrate the significant importance of natural change and domestic migration and the lesser importance of international migration as components of demographic change. This sensitivity analysis is therefore designed to respond to criticisms that these matters have not been appropriately considered in the JCS evidence base and also to assist the JCS team in identifying a reliable dwelling requirement figure.

Zero Migration

This demographic scenario assumes that no internal or international migration will take place in the future. It therefore considers the housing requirements that would be associated with the JCS authorities providing only for pressures arising from its internal population in terms of births, deaths, an ageing population and changing social (household formation and dwelling occupancy/consumption) patterns. Although the circumstances that are tested by this scenarios are not realistic and would not be expected to happen, this is powerful in demonstrating the implications of internal population change alone and the importance of migration in contributing towards a more balanced population structure and economic well-being.

The key results associated with this scenario are illustrated below:

Table 3.6 Zero Migration Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	24,400	1,220
Households	17,300	865
Dwellings	18,000	900
Indigenous Labour Force	$-8,200$	-410
Jobs Supported*	$-5,200$ to $-3,100$	-260 to -185

* Employment range based upon different assumptions relating to reduction of unemployment levels. Existing commuting levels held steady throughout the JCS period.

[^7]
Page 106

Source: NLP Analysis of PopGroup Outputs
Reliance upon natural change only would result in a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 55% between 2011 and 2031, such that this age cohort would account for 20% of the population in 2031, compared to 13% in 2011. By contrast the number of working age people is expected to fall by 2.5% over the same period.

Page 107

Figure 3.8 Changing Population Composition in the JCS Area (Zero Migration Scenario)

Taking account of existing housing vacancy rates for each of the JCS authorities, an additional 17,950 dwellings would be required to accommodate the additional number of households that would be associated with the internal population changes. It should be noted that this figure is above that associated with Scenario A in the consultation draft JCS $(16,200)$, demonstrating the extent to which this scenario is not even sufficient to meet needs that are emerging within the local population itself.

Applying age specific economic activity rates for each local authority area to the forecast population shows that this would reduce the indigenous labour force of the area by over 8,000 people over the 20 year study period (-5%). Taking account of alternative assumptions relating to changes in local unemployment rates over the JCS period, this reduction in the number of economically active persons would result in the area being able to support between 4,000 and 7,000 fewer jobs by the end of the JCS period. Clearly this would fail to accord with the economic aspirations of the JCS and would necessitate increasing levels of in-commuting to ensure that the current economic position can be sustained.

Key Implications: Although this scenario is not realistic and would not be realised in practice, it is valuable in demonstrating the importance of catering for migrants in order to ensure the future well-being of the area.

This scenario would involve a requirement for just 18,000 new dwellings over the JCS period between 2011 and 2031. This equates to 900 new dwellings per annum. This level of provision would only support the changing

Page 108

requirements of the existing population and would entirely fail to meet the needs of any migrants.

In reality, such an approach would not result in there being no more migration movements into or out from the area. Rather, the in-migration of people for retirement purposes is likely to result in the displacement of local, working age persons on the basis that they would be less able to compete in the housing market. The implication of providing this level of development is likely to be even more dramatic in terms of the impacts upon the demographic profile of the area and resultant pressure upon services and facilities.

The identification of this level of housing growth would result in a substantial reduction in the number of economically active persons and the number of jobs that could be filled by local persons. Adoption of this approach would therefore effectively constitute planning for the long term economic decline of the area as the reduction in the local workforce would undermine the competitiveness of the area and its attractiveness to potential inward investors. This is in stark contrast to the aspirations of the economic vision for the area and conflicts with the clearly stated objectives of the NPPF.

Domestic Migration

A number of representations to the Preferred Options consultation expressed concern that the dwelling requirement figures contained within Scenarios B, C and D represented an over-estimation on the grounds that, due to factors such as the recession, changing circumstances within the Euro-zone and the Government's migration cap, international migration is likely to fall in the future. In the light of this context, this scenario considers the implications of there being no international in or out migration in the future. It therefore considers the housing requirements that would be associated with migration between the JCS area and other parts of the UK and natural change.

The purpose of this scenario is therefore to illustrate the sensitivity of the housing requirement figure to levels of international migration, by assuming a worst case scenario (i.e. that there is no international migration in the future) even though this is, in reality, unlikely to happen. The key results associated with it are illustrated below:

Table 3.7 Domestic Migration Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	42,400	2,120
Households	26,500	1,325
Dwellings	27,500	1,375
Indigenous Labour Force	4,400	220
Jobs Supported*	$6,200-8,500$	$310-425$

Page 109

* Employment range based upon different assumptions relating to reduction of unemployment levels. Existing commuting levels held steady throughout the JCS period.

Source: NLP Analysis of PopGroup Outputs

The implication of this scenario would again be a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 60% between 2011 and 2031, such that this age cohort would account for 19% of the population in 2031, compared to 13% in 2011.

Page 110

Figure 3.10 Changing Population Composition in the JCS Area (Domestic Migration Scenario)

Source: NLP Analysis of PopGroup Outputs
The population change anticipated by this scenario equates to an additional 26,480 households over the JCS period, reflecting projected shifts in household composition, as applied by the CLG in their 2008-based household projections. Taking account of existing housing vacancy rates and second home ownership levels for each of the JCS authorities, an additional 27,450 dwellings would be required to accommodate these additional households between 2011 and 2031. Again, this is not dissimilar to the dwelling requirement figure that is associated with the 2010-SNPP scenario, demonstrating the extent to which net migration makes only a limited contribution towards anticipated population increase within the JCS area.

However, it is evident that this sensitivity test results in a rather more substantial economic impact. Applying age specific economic activity rates for each local authority area to the forecast population shows that this would increase the indigenous labour force of the area to approximately 60% of the SNPP scenario. Taking account of alternative assumptions relating to changes in local unemployment rates over the JCS period, this increase in the number of economically active persons would support between 6,200 and 8,800 jobs. This is important in highlighting the role of international migration in helping to sustain the local workforce and economy. This shows how failing to provide for the dwelling requirements of international migrants would therefore have an adverse impact local economic well-being and growth.

Page 111

Key Implications: This scenario would involve a requirement for 27,500 new dwellings over the JCS period between 2011 and 2031. This equates to 1,375 new dwellings per annum. Although this is broadly similar to the housing requirement associated with the 2010-SNPP scenario, this approach would result in an ability to accommodate less half the jobs associated with the SNPP scenario. This approach would therefore have a substantial implication upon the local economy, demonstrating the sensitivity of the labour force to international migration.

On the basis of the evidence set out above, it is clear that international migration will continue to play an important role within the JCS area and it would not be within the scope of local authority powers to control it. However, even if it was possible to limit international migration, this would not have a substantial impact upon total housing requirements but would have more significant effect upon the economic well-being of the area. The reason for this can be attributed to differences in the age profile of those living in the JCS area under this scenario compared to the other demographic-led scenarios. Under this zero international migration scenario, the change in the number of economically active persons is much lower than for the baseline and long term migration scenarios, highlighting the role of international migration upon the economic health of the area.

Summary of Demographic Scenarios

The demographic scenarios produce a range of potential housing requirement figures, as summarised below:

Figure 3.11 Potential Dwelling Requirement, 2011-2031

Source: NLP Analysis of PopGroup Outputs

In considering these results, it is important to recognise that the zero migration scenario is intended for illustrative purposes only. It is not reasonable to expect that population growth and future housing requirements within the JCS area would only arise as a result of natural change. Accordingly, this scenario should not be regarded as a viable option as it will not be possible to prevent migration which will be important for the economic and social well-being of the area.

The other demographic scenarios all generate a housing requirement of approximately 30,000 . This comparability is important in pointing towards clear evidence of the future housing need that would arise is demographic factors alone were taken into consideration. However, as set out in more detail below, the demographic scenarios do not take account of the economic aspirations that exist for the area and, as such, do not provide an adequate basis for a joined-up Joint Core Strategy that accords with the requirements of the NPPF.

The domestic migration scenario shows that international migrants make a limited contribution to population growth. However, the age and economic status of those moving into the JCS area from overseas mean that this group makes a substantial contribution to employment growth. This serves to underline the importance of international migration within the JCS area.

Economic Analysis

An important strategy aim of the JCS is to promote economic growth. This is expressed in the vision for:
"A strategy which fosters growth in the local economy and provides sufficient homes, including affordable homes, in sustainable locations, without increasing the risk of flooding, or harming high quality landscape, whilst maintaining and enhancing the separate vitality, identity and character of individual settlements."

This objective also reflects the guidance set out within the pro-growth NPPF.
The demographic scenarios set out above results in a requirement for approximately 30,000 dwellings over the JCS period from 2011 to 2031. Due to the ageing population within the area and the demographic profile of migrants into the area, each of these scenarios would result in a substantially greater increase in the number of retired people compared to those of working age. The implication is that the demographic scenarios would all result in a relatively modest increase in the number of working age persons (and the natural change scenario would result in a decline in the number of working age people). As such, the number of jobs that could be supported by local workers is very limited - from a decline in 7,000 to an increase in 12,000.

The precise number of jobs that could be supported by each scenario will depend upon the application of assumptions relating to changes in the unemployment rate over time. The rate and scale of any such change cannot be precisely known at this time, but a series of sensitivity tests can be applied, as follows:

Page 113

Table 3.8 Employment Sensitivity Tests

Sensitivity Test		Variable	
1	Unemployment reduction to longer term average	Unemployment levels in each local authority reduced gradually to the average rate experienced between 2004 and 2011:	
		1	Cheltenham: 5.4\%
		2	Gloucester: 5.8\%
		3	Tewkesbury: 4.2\%
2	Unemployment reduction to longer term minimum	Unemployment levels in each local authority reduced gradually to the lowest rate experienced between 2004 and 2011:	
		1	Cheltenham: 4.2\%
		2	Gloucester: 4.2\%
		3	Tewkesbury: 3.1\%

It has been assumed that existing commuting patterns will be retained throughout the JCS period.

None of the demographic scenarios reflect the economic aspirations that exist for the area or the economic forecasts that have been prepared to inform the JCS. The implication of this is that if the housing requirement was set to reflect the demographic scenarios alone, then the housing and employment elements of JCS strategy would not be joined up and the economic growth that is anticipated would be reliant upon a substantial increase in commuting into the area. Such an approach would not be sustainable and would raise fundamental questions regarding the soundness of the resultant strategy.

In order to seek alignment between the economic and housing elements of the JCS, it is necessary to consider the housing requirements that would be associated with the anticipated level of employment growth, bearing in mind future unemployment, economic activity and commuting patterns.

This scenario tests the demographic changes that would be associated with the level of future employment growth identified by two economic forecasters, Cambridge Econometrics and Experian Business Strategies and then considers the number of dwellings that would be required to accommodate that population change.

Cambridge Econometrics

The Cambridge Econometrics forecasts were commissioned by the JCS authorities to inform the economic assessment that was undertaken by NLP in 2011. These forecasts are consistent with Cambridge Econometrics' Economic

Page 114

Prospects for the Nations and Regions of the UK (July 2011) and BRES employment data.

Although there is no clear intelligence on the likely speed of full recovery or whether we might face a further recession, the cyclical nature of the economy means that a future upturn is almost universally anticipated. In this context, long term economic forecasting would have a greater reliability than short term forecasts as it would assume - and take account of - longer term cyclical trends which can even out individual periods of growth and decline.

In terms of overall growth, CE forecasts that the number of jobs in the study area will rise by 15.3% from 176,950 to 203,960 between 2011 and 2031. This compares closely to ONS data which show a 7.4% increase in employment (11,900 jobs) between 2001 and 2010.

Table 3.9 Employment Growth, 2011-2031

	Employment		Change	
	2011	2031	Actual	$\%$
Cheltenham	61,070	71,240	10,170	16.7
Tewkesbury	43,610	52,590	8,980	20.6
Gloucester	72,270	80,130	7,860	10.9
Total	176,950	203,960	27,010	15.3

Figures have been rounded to the nearest 10

Source: Cambridge Econometrics, 2011
The economic scenario adopts a different starting point to the demographic scenarios. The demographic scenarios apply input data relating to (inter alia) natural change and migration and then identify the resultant population change, dwelling requirements and number of jobs that would be supported by the economically active population. By contrast the economic scenario uses the employment forecast prepared by Cambridge Econometrics as its starting point and then identifies the number of migrants that would be expected, taking account of assumptions regarding commuting, unemployment and economic activity levels and the likely future levels of non-economic migration from this. It then tests the likely levels of natural change and population growth and identifies resultant household growth and dwelling requirements.

The Cambridge Econometrics scenario is therefore based on the creation of 27,000 new jobs between 2011 and 2031 and the implications of the sensitivities set out in Table 3.8. As set out above, the precise implications of an employment-led scenario can be difficult to fully quantify so a range of figures is set out below:

Page 115

Table 3.10 CE Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	$73,200-77,500$	$3,660-3,875$
Households	$39,800-41,600$	$1,990-2,080$
Dwellings	$41,300-43,200$	$2,065-2,150$

The ranges set out reflect the different scenarios summarised in Table 3.8

Source: NLP Analysis of PopGroup Outputs

Under this scenario, the total population of the JCS area is projected to rise by between 73,200 and 77,500 people between 2011 and 2031. This is a substantial increase which is 65% above the level associated with the 2010based SNPP scenario. The population increase associated with an additional 27,000 jobs is so high because the JCS area attracts a very large number of retired people - a characteristic that is expected to continue - such that for every working age person that moves into the area (to fill one of the new jobs) more than one retired (and economically inactive) people will also move into the area. As has been explained elsewhere in this report, migration trends will continue in the longer term and attempts to adjust them through the allocation and development of housing are unlikely to be successful but would tend to have unexpected consequences in terms of resulting in the displacement of local, working age people, to the detriment of the local economy and community.

The level of migration associated with this scenario is almost double the long term past trends and 50% above the peak level that was experienced between 2003 and 2007 . 60% of the migration associated with this scenario would be domestic whilst the remaining 40% would be international migration. Again, this shows the continued importance of domestic migration as the key component of demographic change and also the significance of international migration to employment growth and economic well-being within the JCS area.

Page 116

Figure 3.12 Demographic Change in JCS Area (CE Scenario) ${ }^{6}$

This scenario only would result in a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 60% between 2011 and 2031, such that this age cohort would account for 19% of the population in 2031, compared to 13% in 2011.

[^8]
Page 117

Figure 3.13 Changing Population Composition in the JCS Area (CE Scenario)

Source: NLP Analysis of PopGroup Outputs
$3.60 \quad$ The population change anticipated by this scenario equates to between 39,800 and 41,650 additional households over the JCS period. Between 41,300 and 43,220 additional dwellings would be required to accommodate these households between 2011 and 2031.

Key Implications: This scenario would involve a requirement of between 41,300 and 43,200 additional dwellings over the JCS period between 2011 and 2031. This equates to between 2,065 and 2,160 new dwellings per annum. This is clearly in excess of the demographic scenarios but is important in highlighting the housing requirements that are associated with the additional 1,350 jobs per annum has been forecast by Cambridge Econometrics (and that compares to the past trend figure of 1,320 jobs p.a, 2001-2010 according to ABI / BRES).

Page 118

Experian Business Strategies Ltd

An additional set of employment forecasts was also provided by Experian Business Strategies in 2012. These were compiled using Experian's UK Regional Planning Service (RPS) and provide forecasts to 2031, as well as historical records from 1997.

In terms of overall growth, the number of jobs in the study area is forecast to rise by $8.4 \%(15,580)$ from 185,240 to 200,820 between 2011 and 2031. This is lower than the 7.4% increase in employment (11,900 jobs) between 2001 and 2010 that is recorded by ONS.

Table 3.11 Employment Growth, 2011-2031

	Employment		Change	
	2011	2031	Actual	$\%$
Cheltenham	66,750	73,690	6,940	10.4
Tewkesbury	43,390	46,850	3,460	8.0
Gloucester	75,100	80,280	5,100	6.8
Total	185,240	200,820	15,580	8.4

Figures have been rounded to the nearest 10

Source: Experian Business Strategies, 2012

The Experian scenario is therefore based on the creation of 15,580 new jobs between 2011 and 2031 and again tests the sensitivities set out in Table 3.8. The results of this model run are set out below:

Table 3.12 Experian Scenario Headline Outputs

Category	Change, 2011-31	Annual
Population	$54,000-58,300$	$2,700-2,910$
Households	$31,300-33,100$	$1,565-1,655$
Dwellings	$32,500-34,400$	$1,625-1,720$

The ranges set out reflect the different scenarios summarised in Table 3.8

[^9]
Page 119

Source: NLP Analysis of PopGroup Outputs
3.64 Under this scenario, the total population of the JCS area is projected to rise by between 54,000 and 58,300 people between 2011 and 2031. This is between 20% and 30% above the level associated with the 2010-based SNPP scenario.
3.65 The level of migration associated with this scenario would necessitate an increase above past trends. 80% of the migration associated with this scenario would be domestic whilst the remaining 20% would be international migration. Again, this shows the continued importance of domestic migration as the key component of demographic change and also the significance of international migration to employment growth and economic well-being within the JCS area.

Figure 3.14 Demographic Change in JCS Area (Experian Scenario) ${ }^{8}$

Source: NLP Analysis of PopGroup Outputs
3.66 This scenario only would result in a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 65\% between 2011 and 2031.

[^10]
Page 120

Figure 3.15 Changing Population Composition in the JCS Area (Experian Scenario)

Source: NLP Analysis of PopGroup Outputs
The population change anticipated by this scenario equates to between 31,300 and 33,100 additional households over the JCS period. Between 32,500 and 34,400 additional dwellings would be required to accommodate these households between 2011 and 2031.

Key Implications: This scenario would involve a requirement of between 32,500 and 34,400 additional dwellings over the JCS period between 2011 and 2031. This equates to between 1,630 and 1,720 new dwellings per annum. This is more than the demographic scenarios but would provide the basis for alignment between housing provision and the growth of 780 jobs per annum that has been forecast be Experian Business Strategies (and that compares to the past trend figure of 1,320 jobs p.a, 2001-2010 according to ABI / BRES).

Page 121

Summary of Scenarios

A graphical summary of the dwelling requirements for each scenario between 2011 and 2031 is set out below and compared to the long term average level of housing completions between 2001 and 2010.

Figure 3.16 Dwelling Requirement, 2011-2031

Source: NLP Analysis of PopGroup Outputs
The table below summarises each of the scenarios in tabular form, in terms of the key demographic and supply factors.

Table 3.13 Summary of Scenarios

	Demographic Led					Economic Led	
	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					山	¢ W\% ¢ ¢
Pop Change	46,700	44,700	47,100	24,400	42,400	73,200 77,500	$\begin{gathered} 54,000 \\ - \\ 58,300 \end{gathered}$
Natural Change	22,300	24,400	23,300	24,400	24,400	$\begin{gathered} 25,300 \\ - \\ 26,000 \end{gathered}$	$\begin{gathered} 22,800 \\ - \\ 23,500 \end{gathered}$
Net Migration	24,400	20,300	23,800	0	18,000	$\begin{gathered} 47,900 \\ - \\ 51,500 \end{gathered}$	$\begin{gathered} 31,200 \\ - \\ 34,800 \end{gathered}$

Page 122

Dwelling Change	31,200	28,500	29,600	18,000	27,500	41,300 -	32,500 -
Dwellings p.a.	1,560	1,425	1,480	900	1,375	$2,065-$ 2,160	$1,625-$ 1,720
Jobs	11,700	$9,100-$	$9,600-$	$-5,200$ to	$6,200-$ 8,500	27,000	15,580
	14,100	11,400	12,000	$-3,100$			

Source: GCC / CLG Household Projections / NLP Analysis of PopGroup Outputs
An overview of the housing requirement figures for each local authority area is set out below. A summary of the implications in tabular form is contained within Appendix 6:

Figure 3.17 Dwelling Requirement by Local Authority, 2011-2031

Source: NLP Analysis of PopGroup Outputs
3.71 Whilst it is useful to compare each of the scenarios in graphical and tabular form, careful regard should be given to the implications of each in terms of:
1 Their economic implications;
2 Their impact upon the demographic structure of the JCS area;
3 The reliance upon migration to achieve the necessary level of population change and the implications associated with any such net inflow; and,

4 Their deliverability, judged against past trend completions, land availability and viability factors.

Page 123

Taking account of all of these matters, we set out below an assessment of our recommendations regarding the most appropriate level of growth within the JCS area over the period to 2031.

Assessment of recommendations

Zero migration is not a realistic option

The zero-migration scenario is useful to demonstrate the future need that is generated by the resident population across the three areas. However, it does not offer a realistic future scenario of what will happen in these areas in the future.

It is not possible to prevent the movement of people into or out of any area and, following on from an understanding of what has happened in the past, it is evident that migration will continue to be an important component of demographic change in the future. Migration can be of considerable benefit for the social and economic well-being of an area. It ensures a good mix of people of all age groups, including those of working age that are able to work within the local area. As such, it can contribute towards a more balanced and economically functional society. It is important to acknowledge these benefits and to respond to them by making adequate provision for the future needs of migrants.

An argument has been put forward to suggest that the in-migration of older people can be controlled by limiting the delivery of housing. However, this is not the case as many older in-migrants are likely to be better able to compete in the housing market and therefore migration levels are not likely to be constrained by housing supply. Rather, this action would have a disproportionate impact upon local and younger people who are typically less able to compete in the market.

Reliance only upon natural change would result in a significant change in the demographic profile of the area. The number of people of retirement age is expected to rise by 55% between 2011 and 2031, such that this age cohort would account for 20% of the population in 2031, compared to 13% in 2011. By contrast the number of working age people is expected to fall by 2.5% over the same period.

Without migration, an area will therefore become stagnant and less economically active. This would undermine the attractiveness of the area to potential investors and will also lead to an aging population and increased dependency whereby a smaller pool of local workers are required to bear the additional financial and other burdens associated with the demands on services that are created by the increased number of retired people. This would affect the potential delivery of the JCS vision for the area and would weaken the overall economic position of this important area.

Demographic scenarios fail to take full account of economic factors

3.78 The housing requirement figure for the JCS area should not solely rely on demographic data but (in accordance with the guidance contained within the NPPF) should also reflect the economic aspirations for the area. The baseline (demographic-led) scenario falls well short in terms of its ability to meet both the CE and Experian forecasts for the JCS area between 2011 and 2031.

Recognising the importance of achieving a balanced strategy that is internally consistent and therefore seeks to balance future housing and employment growth, it is evident that the objectively assessed housing requirement should be based both on demographic and economic considerations.

A more balanced population increase will help facilitate and avoid the loss of younger people and increase in older persons in the future. Helping to stem the outflow of working age persons and achieving a balanced community will ensure the JCS area avoids the economic difficulties associated with an ageing population whereby there is a greater demand for services but a more limited supply of labour to provide such services and a reduced income from taxation to fund them.

Whilst the demographic scenarios would result in an increase in the workingage population and would ensure that an increase in employment could be sustained, they fail to reflect the level of economic growth that is anticipated and, as such, would compromise the deliverability of the economic vision for the area. In so doing, it would also result in social implications through the creation of an increasingly aged population.

Need to ensure alignment and maximise economic potential of the area

The importance of selecting an appropriate future housing requirement figure is to ensure balanced growth in-line with the economic potential of an area. To achieve balanced and well-distributed growth, economic policies must align with policies seeking the future development of houses in the area. Policies must therefore ensure that they are pulling in the same direction to achieve the wanted outcomes.

Alignment of housing and the economy is essential to ensuring sustainable development and support for growth. The objectively assessed housing need figure for the JCS area should not solely rely on demographic data but also on an understanding of the future employment changes in the area. The requirements identified by demographic scenarios fail to reflect job forecasts whilst the alternative economic-led approaches provide this better alignment between jobs and housing.

The delivery of sufficient housing for the (expanding) workforce represents an essential element in ensuring that economic growth can be attracted and sustained. Recognition of the housing need associated with the employment forecasts would accord with the objectives of the NPPF and the JCS vision.

Page 125

As such, the jobs-based housing strategy would both support growth and by accommodating an increased number of economically active people, would enhance the attractiveness of the area to inward investors.

Increasing the housing supply will enable a larger proportion of people to be more able to compete in a broader housing market. A more balanced population increase will then help facilitate and avoid the loss of younger people and thereby support the increase in older persons in the future.

Providing good 'social' foundations for an area, i.e. the correct type and amount of housing will mean economic growth can be achieved. Drawing together these considerations, the objectively assessed housing need for the JCS area should be based upon the employment-led scenarios. This would equate to a requirement for between 32,500 and 43,250 dwellings between 2011 and 2031.

The selection of the final figure will depend upon the preferred level of employment growth for the JCS area. The identification of the number of new jobs that are to be sought through the JCS will be based upon the identification of policy aspirations relating to the promotion of key sectors in accordance with the economic and spatial vision for the area.

This work remains to be undertaken and may result in a housing requirement figure that falls outside of the range set out above.

Testing the Options

Meet ambitions regarding increasing supply

The NPPF seeks to "boost significantly the supply of housing" and in so doing, it emphasises the need for local planning authorities to ensure their Local Plan meets the full, objectively assessed needs for housing in the area.

Average annual completions between 2001-2010 across the three areas, Cheltenham, Gloucester and Tewkesbury have been 1,350 per annum (420, 600 and 330 respectively). Rates of up to 1,900 homes per annum were delivered between 2005 and 2009, a period which included the start of the recession and during which two of the JCS authorities (Cheltenham and Tewkesbury) were failing to meet their identified requirements.

This level of past trends would equate to a total supply of 38,000 dwellings over the JCS period. If achieved, the housing figures associated with the Experian forecasts would result in a 25% increase against the long term average delivery but a 10% reduction from the peak supply - meaning that depending upon the period that was used for comparison, the level of growth associated with this scenario may not accord with the NPPF objective of boosting the supply of housing. The delivery associated with the CE projections would represent a boost in supply of between 10% and 55% (depending upon the period against which the figures are appraised).

The requirement figure for the JCS area should not solely rely on demographic data but also on the economic projections for the area. The baseline (demographic-led) scenario fails to deliver the level of future employment growth that has been identified for the area and which would accord with the NPPF and the local economic vision. The JCS must therefore seek to better align their economic aspirations with housing requirements in order to deliver a more robust plan.

Accord with advice on affordability

The economic led scenario results in a requirement between 32,500 and 43,250 dwellings over the JCS plan period. The NPPF requires the supply of local planning authorities "to use their evidence base to ensure that their Local Plan meets the full, objectively assessed needs for market and affordable housing in the housing market area".

The adverse social impacts of failing to provide adequate housing have been set out in this report. The past average delivery of 1,900 dwellings per annum across JCS area coincided with worsening affordability. Whilst the revised requirement figure will not resolve all affordability issues, it will prevent the situation from deteriorating further. By contrast, if insufficient housing is provided across the JCS area, this will significantly increase the affordability problem.

Page 127

Affordability is a function of house prices and income levels. In order to tackle this issue within the JCS area, it will be necessary to address both elements in conjunction with one another - i.e. by increasing the supply of housing and stimulating economic growth so that more jobs (and increased average incomes) can be encouraged. As the Gloucestershire Econometric Model has highlighted, seeking to tackle one element in isolation would not be sufficient to fully respond to on-going affordability concerns.

Demographic profile

The population increase associated with the economic-led scenarios is affected by:

1 The need to attract economic migrants into the area in order to occupy newly created jobs and those that have been left vacant as people retire; and,

2 The continued popularity of the area as a retirement destination and the expectation that the trend of people moving into the area for retirement purposes will continue.

If delivered, the objectively assessed level of housing need would be important in helping to prevent the further polarisation of the demographic profile within the JCS area. By attracting a large number of economic migrants into the area, this level of house building would help contribute towards a more evenly distributed population structure, avoiding loss of younger people and increase in older persons.

Sustainable pattern of development, balancing the needs of the economy and minimise need for commuting

Paragraph 18 of the NPPF states:
"The Government is committed to securing economic growth in order to create jobs and prosperity, building on the country's inherent strengths and to meeting the twin challenges of global competition and of a low carbon future".

It is through the planning system that significant weight should be placed on the need to support economic growth through national down to local policies.

In targeting economic regeneration and growth, the delivery of a wide choice of quality homes is a fundamental element of this. The NPPF places great emphasis on economic growth and it must be recognised that both the creation of jobs and development of housing go hand-in-hand and each one is inherent to the other's success. This means that an area cannot grow economically by creating a large amount of new jobs without the housing to support the workforce. Neither can it deliver a large amount of new housing without providing the new residents with additional employment opportunities.

Alignment of housing and the economy is essential to ensuring sustainable development and support for growth. The requirements identified by demographic scenarios fail to reflect job forecasts whilst the alternative economic-led approach provides better alignment between jobs and housing. Additional housing is required in order to meet the economic aspirations of the area and prevent unsustainable increases in in-commuting occurring because the existing housing supply in the JCS area is not adequate to provide for its workforce.

In addition to providing a scenario which best aligns jobs and housing, the identified level of residential development would deliver an extensive economic boost across the JCS area in terms of:

1 New Homes Bonus;
2 On going Council Tax receipts;
3 Future expenditure by those living within the new properties;
4 Indirect and induced benefits arising from employment and expenditure associated with the new housing; and,

5 Investment in the area by developers.

Market capacity and deliverability

The NPPF outlines the critical importance of ensuring Local Plans meet the need for housing in the market area. As part of this, paragraph 47 states:
"Where there has been a record of persistent under delivery of housing, local planning authorities should increase the buffer to 20% (moved forward from later in the plan period) to provide a realistic prospect of achieving the planned supply and to ensure choice and competition in the market for land".

We consider the implications of this in Appendix 5 but it is evident that this will necessitate an increase in supply over and above the objectively assessed need.

Rates of up to 1,900 homes per annum have been delivered in the past and could be replicated, given the scale of need and with a supportive policy position. This past level of peak completions occurred at a time when two of the local authorities were persistently failing to meet their requirements. On this basis, more could have been built, clearly demonstrating the suggested requirement figure is not an unrealistic target across the JCS area.

However, going forwards, it will be necessary to review the capacity to meet the objectively assessed need. As set out at the start of this report, if it is found that sufficient capacity does not exist, then the JCS authorities should seek to maximize the delivery of housing and provide evidence to demonstrate the constraints that exist and the implications of these in terms of economic and social considerations. However, just because the requirement cannot be met does not mean that it does not exist.

Page 129

4.19 The NPPF emphasises the importance of achieving sustainable development. The employment-led scenario would contribute towards the social and economic components of sustainability whilst the supply side assessment would contribute towards the environmental component:

Joined-up policy making

Paragraph 14 of the NPPF states:
"At the heart of the National Planning Policy Framework is a presumption in favour of sustainable development, which should be seen as a golden thread running through both plan-making and decision-taking".
For plan-making this means that;
i local planning authorities should positively seek opportunities to meet the development needs of their area;
ii local Plans should meet objectively assessed needs, with sufficient flexibility to adapt to rapid change

For decision-taking this means;
iii where the development plan is absent, silent or relevant policies are out-of-date, granting permission...".

This emphasises the importance of up-to-date and locally relevant planning policies which will enable development and do not stifle it. It also makes clear that if suitable policies are not in place then sustainable forms of development will be favoured.

The JCS authorities must therefore develop concise and specific policies which shape future development in the right direction. These should entwine the economic/jobs aspect of development and the development of new housing. As previously discussed, the integration of both of these elements is inherent to future growth which is balanced across the JCS area.

Page 130

New policy initiatives should be encouraged that help balance economic, social and environmental matters. For example, policies may seek to encourage the reduction of unemployment and vacancy rates by using area-specific housing/employment led schemes.

Distribution of growth

Following the review and development of a requirement figure for the JCS area, the next phase is to assess the housing land supply across each authority to consider the potential to deliver what the requirement sets out.

Despite being considered within the context of a JCS, it is important that each Local Authority seeks to meet their individual requirement figure in the first instance, rather than assuming that the duty to cooperate would allow it to be met elsewhere. Whilst the reality is that growth is likely to be strategically planned across the three authority areas, the basis for the identification of potential housing sites should be to seek to locate them where the need exists. There must be a duty to cooperate in order to achieve housing targets but growth must be evenly distributed to ensure the development balanced communities across the JCS area.

The housing need for each of the JCS authorities is set out below. This does not take account of issues arising as a result of the duty to co-operate but rather reflects the specific requirements for each of the three local authority areas:

Table 4.1 Housing Requirement for each Local Authority Area - Economic Led

LA Area	Housing Need, 2011-2031
Cheltenham	$12,650-15,900$
Gloucester	$10,550-13,200$
Tewkesbury	$9,300-14,100$
TOTAL	$32,500-43,500$

Source: NLP Analysis of PopGroup Outputs
These therefore represent the policy area requirements to be provided for either in each local authority area or through the application of the duty to co-operate. Key factors to be taken into account when seeking to identify how the required level of housing is to be accommodated include:
1 Land availability in each local authority area;
2 Environmental constraints;
3 Infrastructure provision and constraints; and,
4 Viability and deliverability considerations.

Page 131

Conclusion

Nathaniel Lichfield \& Partners (NLP) was appointed by Gloucester City Council, and Cheltenham and Tewkesbury Borough Councils to undertake an independent assessment of housing requirements for the Joint Core Strategy (JCS) area

The key purpose of this study is to provide further evidence to support the emerging JCS by:

1 Verifying the approach that has been undertaken to date in respect of the Local Projections and Household estimates and the translation of these figures to dwelling requirements;

2 Reviewing the representations that have made in respect of housing strategy matters and providing commentary and advice on the ways in which these might impact upon the assessment of market and affordable housing requirements;

3 Demonstrating the housing requirements for the overall JCS area, at an individual local authority area level, and for the Cheltenham and Gloucester Wider Policy Areas; and,

4 Providing a clear understanding of the impact of the NPPF upon housing requirements for the JCS area.

Housing Needs and Housing Supply

In seeking to fulfil the stated brief, this study distinguishes between housing need and housing supply and focuses upon the NPPF requirement to identify an objective assessment of needs.

1 Housing needs: how many houses are needed in a local area?
2 Housing supply: how / where can these houses be delivered?
The implication of this is that housing supply matters should not be taken into consideration following the identification of local needs.

Page 132

Housing Needs

Housing requirements in any area are affected by the following inter-related considerations:

1 Demographic: the change in the number and profile of the people that will live in the local area;

2 Housing: the number of dwellings that are required to accommodate the changing population size and structure; and,

3 Economic: the number of workers and jobs that can be supported by the local population.

The relationship between these factors is complex and each can shape housing demand. As such, the implication of changes to each need to be taken into account when seeking to identify the objectively assessed local housing need. In the context of the NPPF objectives, and in the interests of reflecting the JCS vision to "foster growth in the local economy and provide sufficient homes...", it is particularly important to understand how alignment can be achieved between economic and housing objectives.

The key variables that should be tested as part of the process of objectively assessing need are summarised below:

Page 133

The Objectively Assessed Housing Need

The identification of an objectively assessed level of housing need within this report is based upon a series of assumptions relating to each of these broad factors. These are discussed in detail in Chapter 3 and Appendices 2 and 3. In summary, two broad types of scenarios were considered, as follows:

1 Demographic-led scenarios: apply input data relating to (inter alia) natural change and migration and then identify the resultant population change, dwelling requirements and number of jobs that would be supported by the economically active population.
2 Economic-led scenarios: use the employment forecast prepared by Experian Business Strategies and Cambridge Econometrics as their starting point and then identifies the number of migrants that would be expected, taking account of assumptions regarding commuting, unemployment and economic activity levels and the likely future levels of non-economic migration from this. They then test the likely levels of natural change and population growth and identify resultant household growth and dwelling requirements.

The demographic scenarios result in a requirement for 30,000 dwellings over the JCS period from 2011 to 2031. Due to the ageing population within the area and the demographic profile of migrants into the area, each of these scenarios would result in a substantially greater increase in the number of retired people compared to those of working age. The implication is that the demographic scenarios would all result in a relatively modest increase in the number of working age persons (and the natural change scenario would result in a decline in the number of working age people). As such, the number of jobs that could be supported by local workers is limited in the context of the level of growth that is forecast by Cambridge Econometrics and Experian.

None of the demographic scenarios reflect the economic forecasts that have been prepared to inform the JCS. The delivery of 30,000 dwellings would fail to support the level of employment growth that has been identified as being likely to occur over the JCS period. The implication of this is that if the housing requirement was set to reflect the demographic scenarios alone, then the housing and employment elements of JCS strategy would not be joined up and the economic growth that is anticipated would be reliant upon a substantial increase in commuting into the area. Such an approach would not be sustainable and would raise fundamental questions regarding the soundness of the resultant strategy. In addition, it would also conflict with the key objectives of the NPPF.

Against this context, the importance of selecting the correct future housing requirement figure is to ensure balanced growth in line with the economic potential of an area. To achieve balanced and well-distributed growth, economic policies must align with policies seeking the future development of houses in the area. Policies must therefore ensure that they are pulling in the same
direction to achieve the wanted outcomes. A failure to achieve this objective could serve to undermine the soundness of the JCS and the ability of the local planning authorities to control the future granting of planning permission.

Alignment of housing and the economy is therefore essential to ensuring sustainable development and support for growth. The objectively assessed housing need figure for the JCS area should not solely rely on demographic data but also on an understanding of the future employment changes in the area. This is because the delivery of sufficient housing for the (expanding) workforce is essential to ensuring that economic growth can be attracted and sustained. Recognition of the housing need associated with the employment forecasts would accord with the objectives of the NPPF and the JCS vision.

As such, the economic scenarios have tested the housing implications of the creation of 15,500 and 27,000 new jobs between 2011 and 2031. It would both support growth and by accommodating an increased number of economically active people, would enhance the attractiveness of the area to inward investors.

Increasing the housing supply will enable a larger proportion of people to be more able to compete in a broader housing market. A more balanced population increase will then help facilitate and avoid the loss of younger people and thereby support the increase in older persons in the future.

Providing good 'social' foundations for an area, i.e. the correct type and amount of housing will mean economic growth can be achieved. Drawing together these considerations, the objectively assessed housing need for the JCS area should be based upon the employment-led scenarios. This would equate to a requirement for between 32,500 and 43,250 dwellings between 2011 and 2031.

The selection of the final figure will depend upon the preferred level of employment growth for the JCS area. The identification of the number of new jobs that are to be sought through the JCS will be based upon the identification of policy aspirations relating to the promotion of key sectors in accordance with the economic and spatial vision for the area.

This work remains to be undertaken and may result in a housing requirement figure that falls outside of the range set out above.

Sub-JCS Implications

Despite being considered within the context of a JCS, it is important that each Local Authority seeks to meet their individual requirement figure in the first instance, rather than assuming that the duty to cooperate would allow it to be met elsewhere. Whilst the reality is that growth is likely to be strategically planned across the three authority areas, the basis for the identification of potential housing sites should be to seek to locate them where the need exists. There must be cooperation in order to achieve housing targets but

Page 135

growth must be evenly distributed to ensure the development balanced communities across the JCS area.

The housing need for each of the JCS authorities is set out below. This does not take account of issues arising as a result of the duty to co-operate but rather reflects the specific economic-led requirements for each of the three local authority areas:

Table 5.1 Housing Requirement for each Local Authority Area

LA Area	Housing Need, 2011-2031
Cheltenham	$12,650-15,900$
Gloucester	$10,550-13,200$
Tewkesbury	$9,300-14,100$
TOTAL	$32,500-43,500$

Source: NLP Analysis of PopGroup Outputs
These therefore represent the policy area requirements to be provided for either in each local authority area or through the application of the duty to co-operate. Key factors to be taken into account when seeking to identify how the required level of housing is to be accommodated include:
1 Land availability in each local authority area;
2 Environmental constraints;
3 Infrastructure provision and constraints; and,
4 Viability and deliverability considerations.

Towards the JCS: Matters to Consider

In seeking to progress towards the preparation of a sound JCS, the following key actions are required:
1 The importance of making the necessary decisions and delivering a JCS.
2 The importance of distinguishing between housing needs and supply:
i Establishing the "objectively assessed housing need" and presenting it within a sound evidence base; and,
ii Understanding how to meet the housing need in a sustainable manner.
3 Ensuring a coherent strategy which is consistent in its ability to achieve the stated vision and to meet the requirements of the NPPF.
4 Ensuring that the duty to co-operate is fully addressed, recognising that Tewkesbury may be required to accommodate some Cheltenham and Gloucester related growth but that Cheltenham and Gloucester should

Page 136

seek to maximise capacity within their administrative areas in the first instance.

Page 137

Appendix 1
 Context to the JCS Area

This section provides a high level overview of the key drivers and current evidence base of the housing market in the Cheltenham, Gloucester and Tewkesbury Joint Core Strategy Area in relation to demographic, economic and housing factors. In so doing it draws upon a range of locally and nationally published datasets.

Demographic Context

Population/Households

The populations of Cheltenham, Tewkesbury and Gloucester have all been growing steadily over the past two decades. Cheltenham saw its population rise by 8.6% between 1991 and 2009, whilst Gloucester saw its population rise by 16.4% and Tewkesbury experienced a 14.9% population rise over the same period.

Figure 5.1 Population Change in the JCS Area, 1991 and 2009

Source: Gloucestershire County Council Housing Trend Analysis, 2011
This population increase has led to a growth in households demonstrating a somewhat higher percentage increase. Cheltenham has seen an increase in households of 18.7%, whilst Gloucester saw households rise by 27.8% and Tewkesbury by 25.4\%.

Page 138

Figure 5.2 Household Change in the JCS Area, 1991 and 2009

Source: Gloucester County Council Housing Trend Analysis, 2011
Figure 5.3 shows the current population structure for the three local authority areas:

1 Cheltenham demonstrates a high proportion of adults of working age, and almost equal proportions of younger people and those aged 65 and over;
2 Gloucester follows a similar pattern, although has a slightly higher proportion of younger people and a lower proportion of those aged 65 and over; and,

3 Tewkesbury has the lowest proportion of working aged adults of the three local authorities and the highest proportion of those aged 65 and over.

Figure 5.3 Demographic Structure in Cheltenham, Gloucester and Tewkesbury, 2010

[^11]
Page 139

Figure 5.4 shows how the age structure of the three local authority areas has changed between 1992 and 2010. In Cheltenham, the number of people of working aged has increased by 10.6% over this period, with smaller increases in younger people (1.5\%) and those aged 65 or over (4.7\%). In Gloucester, the increase in those of working age was higher at 15.3% although this was overshadowed by an increase of 17.7% in the number of those aged 65 or over. Tewkesbury saw a considerable increase in those aged 65 or over (36.4\%) which was substantially greater than the increase in the working age population of 13%.

Figure 5.4 Change in Population Structure, 1992-2010

Source: ONS Mid Year Population Projections
This points towards wider evidence regarding an ageing population, an important factor that will need to be addressed in planning for the future of the area, particularly given the need to sustain a working age population to support the economy.

These changes in the population structure create significant pressures upon the housing market. Average household sizes in England have been steadily declining over the past three decades, reflecting similar social trends to Gloucester and Tewkesbury. With people living longer, and a change in the dynamics of households such as single-person households, this creates an increased demand for housing.

Migration

Although commuting flows (considered later in this section) provide a reasonable proxy for the extent of the housing market within which the three

Page 140

local authorities sit, a further way of considering this relationship is migration flows.

Patterns of migration are a function of a range of housing market factors combined with household circumstances. Key factors include affordability (which itself is influenced by a range of factors), accessibility (particularly related to place of work and ease of commuting) and the supply, range and quality of local employment opportunities.

The landscape plans contained below illustrate the migratory patterns observed in 2009/2010. This shows that whilst there is a considerable level of interdependency between Cheltenham, Tewkesbury and Gloucester, there are high levels of outflow and inflow between Gloucester and elsewhere and Cheltenham and elsewhere. There is limited ($0-15 \%$) migration between Gloucester and Cheltenham themselves. In both Cheltenham and Gloucester, the level of inflow/outflow was almost equal with no significant net loss or gain. Tewkesbury on the other hand had a net gain of approximately 900 people.

Table 2.1 below shows international migration flows into and out of the three authorities. Unlike internal migration, in 2009/2010 Cheltenham experienced more than double the amount of international 'in' migration than 'out' with a net gain of approximately 900 people. Both Tewkesbury and Gloucester also experienced higher levels of in migration although not to the same level, with net gains of 100 and 300 respectively.

Table 5.2 International Migration 2009-2010

	International 'In' Migration (Number of People)	International 'Out' Migration (Number of People)	Net Migration
Cheltenham	1,600	700	900
Gloucester	800	500	300
Tewkesbury	200	100	100
Study Area	2,600	1,300	1,300

[^12]Page 141

Page 142

Page 143

Page 144

Page 145

Economy \& Commuting

Employment levels and job growth are important drivers of demand for housing. Based on the latest Business Register and Employment Survey (BRES) data the successor dataset to the Annual Business Inquiry (ABI) - there were 66,700 jobs in Cheltenham, 66,400 jobs in Gloucester and 40,000 jobs in Tewkesbury in 2010. It implies a distribution of 39:38:23 of the 173,100 jobs between the study area, which is reflective of the important economic roles of both Gloucester and Cheltenham.

The ratio of employment and labour force, taking account of commuting provided the basis by which the PopGroup software will assess and relate economic change to dwelling requirements, drawing on population, dwelling and employment forecasts across the component authority area (as set out in the modelling contained within this study).

In considering economic issues in relation to each part of the JCS area, it is important to do so in the context of the areas geography and location of employment. In particular, it is noted that a significant proportion of Tewkesbury's job growth is reflected by employment and business park growth occurring on the edge of Gloucester, particularly at Gloucester Business Park and other business areas on the periphery of the City.

Commuting

The relationship between employment levels and economic activity in any area can be expressed through the PopGroup modelling software in terms of an "LF Ratio". A ratio of 1.0 would reflect a balance between the number of workers and employment opportunities and would therefore result in a position of zero net commuting (even with gross flows in either direction). By contrast, a ratio in excess of 1.0 would reflect a position of net out-commuting of workers as in Cheltenham and Tewkesbury whilst a ratio of less than 1.0 would reflect a position of net in-commuting, as in Gloucester.

An analysis of employment and economic activity levels has highlighted the following LF ratio figures for 2010:

Table 5.3 Commuting Levels, expressed as LF Ratios

Local Authority Area	LF Ratio
Cheltenham	1.06
Gloucester	0.93
Tewkesbury	1.17

[^13]
Page 146

From the above, it is clear that Gloucester City has a much more important role than the areas as a commuting magnet. By far, Tewkesbury is the biggest exporter of labour within the study area.

Economic Activity and Employment

Figure 5.5 shows employment levels over the period 2001-2010. Cheltenham has seen an overall increase in jobs of approximately 2,900 although this has come after a considerable fall after the peak of 2004 which saw a decrease of approximately 10,000 jobs between 2004 and 2009, before things improved dramatically in 2009/10.

Gloucester saw a rise in the number of jobs until 2004 and has experienced a gradual fall since, although still had a net gain of approximately 2,200 over the period 2001-2010. Tewkesbury on the other hand has seen a steady rise in jobs over the period with no considerable falls. Overall, Tewkesbury had a net gain of approximately 6,900 between 2001 and 2010.

Figure 5.5 Employment within the JCS Area, 2001-2010

Source: ONS - ABI / BRES data
Against this, the number of economically active persons in Cheltenham increased by 7.4%, Tewkesbury by 4.4% and Gloucester by 10% over the period 2004 to 2010. The implication of this is that by 2010, the number of economically active people within the study area had increased by 7.6% to 168,400. Interestingly, the number of economically active in Tewkesbury is 5.9% over the number of jobs available within the authority area, indicating likely implications for commuting patterns.

Page 147

Figure 5.6 Number of Economically Active Persons within JCS area, 2001-2010

Source: ONS
Figure 5.7 below sets the economic activity rates in the JCS area in 2011 within the County-wide context. This shows how all three JCS authorities enjoyed high levels of economic activity, particularly when compared to the regional (78.4\%) and national averages (76.1\%).

Figure 5.7 Economic Activity Levels in Gloucestershire, 2010-2011

Appendix 2

Review of Work Undertaken to
Date

Demographic Factors

Population projections within an area take account of the impact of natural change and migration factors in order to identify the future population by age and gender.

Baseline Population

This represents the population by gender and year of age at the base year. Population change over the forecasting period is set against this baseline.

Table 5.4 Assessment of Baseline Population

GCC / JCS Authorities Data Source

The base year taken for the assessment was 2008 and locally derived baseline population data was applied. This was estimated as being 2% higher than the ONS Mid Year Estimates. This deviation related particularly to the working age population (20-49 years old) and would have had implications upon other components of the population structure.

NLP Recommended Data Source

The Office of National Statistics' (ONS) Population Estimates Unit which splits population by age cohort and gender. The base year should be adjusted to reflect that of the emerging JCS.

Given that the JCS covers the period from 2011 to 2031, it is important to ensure that the population base date can be aligned as closely as possible to this. Application of the data contained within the latest 2010 Sub National Population Projections results in a base year of 2010 whilst application of data contained within the latest CLG household projections results in a base year of 2008. Both sets of projections can be used to provide a projection for the JCS period.

Application of these latest figures would remove the requirement for the rebasing exercise which has been undertaken and which is summarised in the Housing Background Paper.

The application of more up-to-date baseline information provides a more robust framework against which to consider future requirements, in accordance with the NPPF.

Page 149

Births and Deaths

The Total Fertility Rate (TFR) is the average number of children that would be born to a woman over her lifetime if she were to experience the exact current age specific fertility rates (ASFR) through her lifetime and if she were to survive from birth to the end of her productive life. It is a standardised measurement which eliminates the impact of changes in the age distribution of the population and thereby allows analysis of trends over time. Projected TFR rates are applied to the population forecast to establish the number of births over the JCS period.

A Standard Mortality Rate (SMR) is a measure of the number of deaths in some population, scaled to the size of that population, per unit time. It is typically expressed as a number of deaths per 1,000 individuals per year. Projected SMR rates are applied to the population forecast to establish the number of deaths over the JCS period.

Table 5.5 Assessment of Natural Change

	GCC / JCS Authorities Data Source	NLP Recommended Data Source

The fertility and mortality rates contained within the SNPP take account of local past trends but are then subject to adjustments to ensure that the total population projections for each local authority area reflect the national population projections.

The data that informed the latest SNPP reflects the birth and death rates for the period between 2005 and 2010, whilst the 2008-based SNPP was informed by birth and death rates between 2003 and 2008. Both therefore include the period of higher fertility in Gloucestershire. However, as there is no clear

Page 150

assurance that the recent higher levels of fertility will be maintained in the future, it is considered that a 5 year past trend-based analysis is more likely to provide a robust indication of future change.

Natural change tends to be less fluid that migration but it is influenced by migration. The balance of in- and out-flows of people might change the demographic profile of a particular area in terms of those of child bearing age (impacting upon the number of births) and of older age (impacting upon the number of deaths). Modelling TFR and SMR rather than actual numbers of births and deaths allows the implications of these changes to be fully tested. An approach that is based upon the total fertility rate and standard mortality rate is therefore considered to be more reliable than one which focuses upon actual numbers of births and deaths as it can offer a more reliable basis for alternative scenarios to be tested.

Domestic Migration

Domestic migration covers gross in and out movements between individual local authorities and the rest of the UK (including adjoining local authorities) and also cross-border movements (i.e. between England and Wales, Scotland and Northern Ireland).

Because of the way that local authority boundaries are drawn and data is recorded, a very short distance move might therefore be officially categorised as contributing towards internal migration. This is an important consideration, particularly in urban authorities where the administrative boundary is drawn tightly around the settlement boundary, such that there is relatively limited capacity for additional house building. An imbalance of supply and demand might result in large numbers of people seeking to move the adjoining authority areas where there might be a better supply of housing that meets their needs or where houses might be cheaper.

The distribution of migration by age is provided through an application of Age Specific Migration Rates represent the rate of in- and out-migration per 1,000 people of a specific year of age. Separate Age Specific Migration Rates are provided for males and females. These are important in helping to understand the implications of migration in terms of the future local demographic profile and economic activity, fertility and household requirements, as well as in respect of education, health and other facilities.

Page 151

Table 5.6 Assessment of Domestic Migration

GCC / JCS Authorities Data Source NLP Recommended Data Source

Past trend based, taking account of the past 5 years - data from ONS.

2008 data supplied by the ONS's migration statistics unit and used within the ONS 2008-based SNPP. This is based upon 5 year past trends.

Alternative migration scenarios might be based upon longer term migration trends or specific migration figures.

The migration rates contained within the SNPP take account of local past trends but are then subject to adjustments to ensure that the total population projections for each local authority area reflect the national population projections.

Given that past trend migration rate might have been affected by the level of housing delivery, consideration should also be to alternative migration trends in order to test the sensitivity of the housing requirement figure to different levels of migration and in order to identify a more robust basis for future analysis.

It is important to note that demographic forecasts consider future migration in relation to total flows. No consideration is given to the point of departure in the case of in-migration or the destination in the case of out-migration. However, in order to consider the dynamics of population change within the JCS area, it is helpful to consider the geography of migration movements, for example in relation to the flow of migrants between Cheltenham, Gloucester and Tewkesbury and the following areas:

1 Each of the other constituent authorities;
2 Other parts of Gloucestershire;
3 Other parts of the South West region;
4 The adjoining West Midlands region; and,
5 Elsewhere within the UK.
In seeking to understand all of these trends, it is important to consider key push and pull factors relating to:

1 The supply of, and demand for housing;
2 The availability of employment opportunities;
3 The relative location of each local authority area; and,
4 The image and profile of the areas.

Page 152

An analysis of the internal migration flows into each of the JCS authorities demonstrates the level of interconnection between the authorities and the wider area. Key trends include:

1 A high level of migration from Gloucester and Cheltenham into Tewkesbury. Given the geography of the local authority boundaries, this trend is expected. The fact that there is a larger relative flow of migrants from Cheltenham to Tewkesbury (compared to Gloucester and Tewkesbury) reflects the higher level of housing completions within Gloucester and therefore the spatial balance of supply and demand.

2 There is also a significant (albeit smaller) reverse movement from Tewkesbury to Cheltenham and Gloucester. This is likely to be characterised by those attracted to the urban centres and seeking employment opportunities.

3 The level of migration into Cheltenham and Tewkesbury from Gloucestershire is similar (9.7\% and 10.6\% respectively), whilst 23.2\% of internal migrants into Gloucester move from Gloucestershire. The reason for this difference is unclear but might be associated with the status of Gloucester as the county town.

4 There is a greater level of migration between Cheltenham and Gloucester and the rest of the South West region than between Cheltenham and Gloucester and the West Midlands. This may be explained by their economic importance within the region and their contribution towards the most prosperous part of the region

5 By contrast, Tewkesbury is better connected with the West Midlands in terms of the flow of internal migrants, although it should be noted that the overall number of movements into and out from Tewkesbury are lower than for the larger urban centres.

6 A greater level of migration from the rest of the UK to Cheltenham and Gloucester than to Tewkesbury. This reflects the scale of these main settlements and their importance as commercial centres. By contrast, the smaller scale of settlements within Tewkesbury borough means that it is less able to attract large numbers of migrants from the rest of the UK.

Page 153

Table 5.7 Domestic Migration Flow into JCS Area (\% of total flow)

		From						
						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \mathbf{N}^{0} \\ & \stackrel{5}{\dot{N}} \end{aligned}$		
	Cheltenham	-	6.6\%	12.3\%	9.7\%	17.5\%	12.7\%	41.3\%
	Gloucester	9.8\%	-	13.3\%	23.2\%	12.3\%	8.6\%	32.8\%
ค	Tewkesbury	26.6\%	17.4\%	-	10.6\%	9.2\%	12.8\%	23.4\%

Source: Migration Statistics Unit, ONS 2010
Table 5.8 Domestic Migration Flow from JCS Area (\% of total flow)

	From			
	Cheltenham	Gloucester	Tewkesbury	
Cheltenham	-	8.4%	20.7%	
Gloucester	7.8%	-	18.5%	
Tewkesbury	18.5%	15.5%	-	
Gloucestershire	9.7%	21.4%	11.7%	
South West	16.4%	14.8%	9.0%	
	West Midlands	10.4%	9.1%	15.9%
\therefore	Rest of UK	37.2%	30.7%	24.1%

Source: Migration Statistics Unit, ONS 2010
The data indicates that a large proportion of internal migrants come into Cheltenham and Gloucester from elsewhere in the UK (i.e. from beyond the South West and the West Midlands). To put these figures into context, we have reviewed migration flows into and out from comparator cities. This has revealed that relative migration flows between the comparator cities and the rest of the UK is higher than that between Cheltenham and Gloucester and the rest of the UK:

Page 154

Table 5.9 Migration Between Comparator Cities and the Rest of UK

	\% in-migration from rest of UK	\% out-migration to rest of UK
Cambridge*	46.2	33.6
Exeter**	53.5	44.7
Warwick***	42.2	55.1

* Rest of the UK defined as beyond East of England and London
** Rest of UK defined as beyond South West
*** Rest of UK defined as beyond West Midlands and South West

Source: Migration Statistics Unit, ONS 2010
The position highlighted above represents the level of movements during the year ending June 2010. By comparing the internal migration flows between 2005 and 2010, it is possible to understand the extent to which this position was characteristics of longer term trends. As set out below, this shows a very high level of consistency in terms of the level and actual amount of in and out migration across the JCS area over this period. The implication of this is that it is reasonable to assume a likelihood that these patterns of movement - which shape housing requirements - might continue in the future.

Internal migration represents a significant component of demographic change and it is not within the scope of the planning system to seek to control migration in any way. The implication of this is that the JCS should consider the likely level of internal and international migration over the next 20 years and plan to meet the associated requirement for additional dwellings.

International Migration

International migration relates to gross movements between individual local authorities and countries outside of the UK. It is recognised that international migration is difficult to predict and that it is highly dependant upon political change. The Government has an explicit policy objective to reduce in-migration but the deliverability of its aspirations remains subject to question.

Page 155

Table 5.10 Assessment of International Migration

GCC / JCS Authorities Data Source NLP Recommended Data Source

Inflow based on local analysis using NiNO statistics for 5 year past trends.

Outflow based on IPS results for 5 year past trends.

2008 data supplied by the ONS's migration statistics unit and used within the ONS 2008-based SNPP.

Alternative migration scenarios might be based upon longer term migration trends or specific migration figures.

The migration rates contained within the SNPP take account of local past trends but are then subject to adjustments to ensure that the total population projections for each local authority area reflect the national population projections.

Although the GCC analysis avoids this adjustment by using "raw" data, it is noted that different data sources have been used in respect of in and out migration. It is not clear why this approach has been adopted but there is a concern that it might result in an inconsistent record of in and out migration and hence, an unreliable indication of net migration trends. A single source of in migration and out migration data is considered to provide a more consistent and reliable basis by which projections can be established.

Given that past trend migration rate might have been affected by the level of housing delivery, consideration should also be to alternative migration trends in order to test the sensitivity of the housing requirement figure to different levels of migration and in order to identify a more robust basis for future analysis.

International migration is an important demographic trend that will continue to influence the population of the UK and local areas in the future and it is important to respond to this reality by planning for the implications of growth. Regardless of the extent to which Government policies seek to influence the level of international migration into the UK, it will remain a key component of demographic change and will continue to offer significant benefits to the UK:
1 Migration from established EU states is expected to continue at a steady rate.

2 We anticipate a stabilisation of migration from recent accession states, although not at the very high levels that were experienced in the prerecession years. As with movement from established EU countries, it is not possible to control this flow of people.
3 EU enlargement will bring with it an increase in the number of migrants coming into the Country, although transitional arrangements and phased accession might help to control the scale of any initial wave such that it would be of the level seen since 2004.

Page 156

4 We anticipate a return to (limited) net in-migration from Old Commonwealth countries and a continuation of flows from New Commonwealth and other countries.

5 The migration cap alone will have a limited effect upon net in-migration.
Regardless of where international migrants come from, they will continue to contribute to population increase in the UK. This should be recognised by and responded to by policymakers at all levels. A failure to meet the needs of international migrants will not only stifle economic recovery and growth, it will also intensify social integration issues as migrants and UK residents compete for scarce resources. Conversely, to properly plan for population growth including population increase resulting from international migration - can be of great benefit not only to the economy but also to the creation of vibrant and viable communities across the UK.

Housing Factors

Population forecasts can be translated to household projections through the application of an allowance for housing headship and the number of people not in households. This is a key stage in preparing the JCS evidence base. In respect of this element of the evidence base, GCC prepared the household projections which were then translated into a dwelling requirement by the JCS team.

Housing Headship Rates

Headship rates are the number of people who are counted as heads of households. An understanding of the overall headship levels and the type of households that they represent (e.g. married households, family households, single person households, etc) can be important in highlighting social and demographic trends (including a movement towards smaller average household sizes) as well as the changes in the overall number of households.

Table 5.11 Assessment of Headship Rates

GCC / JCS Authorities Data Source	NLP Recommended Data Source
	Government data which was used to underpin the 2008-based CLG household projections and applied to the demographic projections for each year as output by the PopGroup model.
Government data which was used to underpin the 2006-based CLG household projections	These headship rates are split by gender and age cohort.

The household headship and adjustment figures that were included in the GCC analysis were based upon the 2006-based CLG household projections. This was the most up to date information that was available at the time of

Page 157

preparation. However, this work pre-dates publication of 2008-based CLG household analysis.

The housing projections that inform the JCS should take account of the most up-to-date information and so should be updated to reflect the 2008 CLG household projections. The 2010-based CLG household projections are expected to be published later in 2012. It would be prudent to review the implications of this information when it becomes available.

Population not in Households

Concealed households are defined as those that neither owns nor rents the dwelling within which they reside and which wish to move into their own accommodation and form a separate household.

PopGroup details the number of concealed families within each study area and this should provide a basis by which the scale of further increase in housing supply that is required to address housing concealment might be identified.

Table 5.12 Assessment of Population Not in Households

GCC / JCS Authorities Data Source NLP Recommended Data Source
Assumptions used to underpin the 2008-based CLG household forecasts. No change is assumed in the rate of concealed households from the CLG identified rate, although a reduction in this rate may be desirable the extent to which this is realistic and achievable is less certain.

Vacancy / Second Homes

Analysis of vacancies and second homes and the backlog of unmet need was undertaken by the JCS team in order to inform its translation of the GCC household projections to dwelling requirements. In any area, the number of households is not the same as the number of dwellings. This is because a number of properties are always empty because they are second homes, are long term vacant houses or comprise short term transactional vacancies. The implication of this is that more dwellings than households are required to meet needs. The relationship between households and dwellings can be established through the application of a vacancy and second homes rate.

In seeking to understand housing vacancy rates, it is important to note how a high level of vacancy would constitute an inefficient use of the housing stock and should be subject to measures to seek to bring empty homes back into active use. However, just because a dwelling happens to be empty does not mean that it is available for reuse and that it could therefore be taken into

Page 158

consideration when seeking to identify how to meet future housing needs. By contrast, a very low level of housing vacancy could affect the efficient operation of the housing market as some vacancies are required in order to ensure that normal transactions can take place. The average vacancy rate in England is currently 3% and a reduction below this would raise a concern regarding a potential impact upon the housing market.

Table 5.13 Assessment of Vacancy / Second Homes

GCC / JCS Authorities Data Source

3% vacancy rate for each local authority area. Para 3.6 of the Housing Background Paper states that this is based upon Empty Property Agency data.

Numbers were provided for second homes although it is understood that the figure for Gloucester was set at zero as the City Council considered the second home rate to be negligible:

	Second Homes
Cheltenham	187
Gloucester	0
Tewkesbury	55

NLP Recommended Data Source

A range of data sources can be applied, including ONS 2008 vacancy and second home data and Housing Strategy Statistical Appendix (HSSA) data, although the coverage for this information is not 100\%.

An alternative source of information is the CLG calculation of Council Tax base for formula grant purposes (October 2011). This sets out the level of vacant/unoccupied and second homes that are exempt from Council Tax or subject to a discount.

As set out above, CLG data provide a more sensitive indication of the vacancy rate and number of second homes:

Table 5.14 Second Home and Vacancy Rate in the JCS Area (October 2011)

Local Authority Area	$2^{\text {nd }}$ homes		Vacant		Combined	
Cheltenham	790	1.5%	1,659	3.1%	2,449	4.6%
Gloucester	152	0.3%	1,741	3.2%	1,893	3.5%
Tewkesbury	239	0.7%	774	2.1%	1,013	2.8%
South West	42,083	1.2%	95,366	2.5%	137,449	3.7%
England	246,510	1.1%	678,291	2.9%	924,801	4.0%

Source: Council Tax Base for Formula Grant Purposes (CTB)
By comparison, the latest Empty Property Agency data (2011) is set out below:

Page 159

Table 5.15 Vacancy Rate in the JCS Area (2011)

Local Authority Area	Vacancy Rate
Cheltenham	3.13%
Gloucester	3.25%
Tewkesbury	2.21%

Source: Empty Property Agency

Backlog of Unmet Housing Demand

The level of unmet housing need that will need to be carried forward to the next plan period and added to the emerging level of housing demand.

Table 5.16 Assessment of Unmet Housing Demand

GCC / JCS Authorities Data Source	NLP Recommended Data Source
	The objective assessment of housing need that is considered by this report reflects the future requirements over the JCS period, between 2011 and 2031.
Consideration will need to be given	
to any over- or under-supply within	
each of the local authority areas	
between the start of the Plan period	
and the time of adoption. This	
should be through the Plan Monitor	
and Manage process.	

figure to cover the JCS period and seeking to ensure that it can be met, in accordance with the requirements of the NPPF.

Employment Factors

Economic data is applied in order to test the implications of particular population/housing scenarios upon the economic well-being of the area, in terms of the number of economically active migrants that would be attracted to the area by new house building and the number of new jobs that these people might support. This analysis does not provide forecasts of future employment growth but is important in helping to demonstrate the extent to which there is alignment between specific employment and housing strategies. The economic data can also be applied in order to test the housing implications of specific employment growth scenarios (i.e. how many dwellings are required to help support the creation of a certain number of new jobs). In order to achieve sustainable forms of development, it is important to ensure that there can be a balance between jobs and houses.

Economic Activity Rate

This is the percentage of the local population (both employed and unemployed) that constitutes the manpower supply of the labour market. Age and gender specific economic activity rates are used to take account of the variations that exist in the economic activity rates for males and females of different ages.

ONS Labour Force Projections (1998) which have been rebased from their 2010 estimate using a uniform adjustment to all age cohorts to meet current total economic activity based upon NOMIS data. The economic activity rates are assumed to remain static going forward with the exception of an adjustment in Male and Female 60-69 cohorts to take account of changing pension ages.

Commuting Rate / Unemployment

Commuting and unemployment both determine the ratio of jobs to workers:
1 In many cases, the people that live in an area are not the same as those that work there. The balance of in and out commuting flows will differ between different areas. An understanding of the current net position is important in order to gauge the housing implications of economic growth. Differential levels of house building and job creation will alter current commuting patterns.

2 The presence of unemployed people within a local authority area will result in an imbalance between the number of jobs and workers (economically active persons). Although it might not be possible to eliminate all unemployment, a policy objective going forwards should be to seek to reduce unemployment levels - particularly where they are presently above the regional or national average level.

Page 161

A standard net commuting rate is inferred through the modelling using a Labour Force ratio which is worked out using the formula: (A) Number of employed workers living in area $\div(B)$ Number of workers who work in the area (number of jobs). This has not been altered over the forecasting period with no assumed increase or reduction in net commuting proportions.

Data taken from the ONS Annual Population Survey model based estimate for November 2010. A gradual reduction in unemployment to the 2004-2010 average figures is assumed, reflecting the fact that these levels are the highest recorded in each of the CGT authorities since pre-recession and that as the economy grows out of recession, unemployment will fall back to a similar rate as seen in the past.

Employment Growth

The changing levels of employment in different economic sectors over a 20 year period from 2011 to 2031, as well as historic growth.

Table 5.17 Assessment of Employment Projections

Abstract

GCC / JCS Authorities Data Source NLP Recommended Data Source CE projections were prepared in 2010. These covered the period to 2020 but these do not cover the whole plan period and it is unclear how the projections for the period from 2021 to 2031 have therefore been achieved.

At a time of dramatic economic change, the period of time for which forecasts can be considered reliable is substantially reduced. Given the availability of more recent 2011-based forecasts, it is not considered appropriate to rely upon the forecasts that were prepared in 2010. In addition, the fact that these only projected forwards to 2020 represents a further cause of concern as they cannot therefore be relied upon to provide robust housing projections for the JCS period.

A series of econometric forecasts have been prepared by Cambridge Econometrics to inform the emerging JCS. The most recent projections were prepared in June 2011. This analysis shows the changing levels of employment in 41 different economic sectors over a 20 year period from 2011 to 2031, as well as historic growth from 1981. These sectors relate to the UK Standard Industrial Classification (SIC) codes groups (UK SIC, 2007). The Cambridge Econometrics forecasts that have informed this study are consistent with their Economic Prospects for the Nations and Regions of the UK (July 2011) and BRES employment data.

In terms of overall growth, the number of jobs in the study area is forecast to rise by $15.3 \%(27,000)$ from 176,950 to 203,960 between 2011 and 2031.

Page 162

This compares to a change of just 2.5% (4,330 jobs) in the preceding 20 years between 1991 and 2011.

Figure 5.8 Employment Change, 1981-2031

Source: Cambridge Econometrics, 2011
An additional set of economic forecasts was obtained from Experian Business Strategies in August 2012. These base forecasts were compiled using Experian's UK Regional Planning Service (RPS). This is a comprehensive economic forecasting service that provides coverage of the UK economy and its regions and counties. It has supported government organisations, local authorities and a wide range of private businesses in decision-making by providing them with forecasts and analysis of regions and local areas for a wide range of economic and demographic indicators.

The RPS provides forecasts down to local area level covering 38 sectors and providing detailed employment and GVA estimates up to 2031. Using the best available data, it is built econometrically on historical and geographical relationships. A range of assumptions about the way in which the national and regional economy is likely to perform are built into the forecasts and these are refreshed on a quarterly basis. Both short and long term drivers are incorporated to reflect the changing economic climate. The key assumptions that are incorporated into the model are summarised below:

Table 5.18 Key assumptions use to inform the Experian UK Regional Planning Service

Short Term Drivers	Long Term Drivers				
Household Sector	Weak earnings growth Welfare cuts	Labour force	Ageing population Long term skills unemployment Lack of access to credit		
Investment	Low interest rates Restricted access to credit		Capour force participation	\quad	Productivity growth
:---					
Investment and					

Page 163

	Persistence of unemployment		infrastructure Advance of developing economies		
Fiscal					
Austerity				\quad	Impact of cuts
:---					
Continuation of inflationary					
pressure	\quad factors	Industrial profile			
:---					
Regional variations					

Source: Experian Business Strategies Ltd
Experian's forecasts are a relevant and appropriate basis for assessing the economic growth potential of the economy of the JCS area.

In terms of overall growth, the number of jobs in the study area is forecast to rise by $8.4 \%(15,580)$ from 185,240 to 200,820 between 2011 and 2031. This compares to a change of 5% (8,730 jobs) between 1997 and 2011.

Figure 5.9 Employment Change, 1997-2031

Source: Experian Business Strategies Ltd

Page 164

Page 165

Appendix 3 Inputs into HEaDROOM
 Modelling

Population Base

The forecasts that are prepared by PopGroup build upon a base population which sets out the number of people that resided across Cheltenham, Tewkesbury and Gloucester in 2008 (the base year) by individual year of age. This data, which was supplied by Office of National Statistics, reflects the population base that was used to inform the 2008-based Population and Household projections for Cheltenham, Gloucester and Tewkesbury.

Fertility

The number of births in any area is a function of the number of women of childbearing age (16-44) and fertility rates. It can also be influenced by migration rates as:

1 Migration will result in changes to the number of women of childbearing age; and,

2 The fertility rate of migrants might be greater than that of UK born women.

The Total Fertility Rate (TFR) is the average number of children that would be born to a woman over her lifetime if she were to experience the exact current Age Specific Fertility Rates (ASFR) through her lifetime and if she were to survive from birth to the end of her productive life. It is a standardised measurement which eliminates the impact of changes in the age distribution of the population and thereby allows analysis of time trends. It generally produces a better match of births to those that are likely to have children. As such, it is considered to be more reliable than the General Fertility Rate (GFR) which is a measure of the number of live births per 1,000 women aged 16-44. The UK Total Fertility Rate rose from 1.64 in 2002 to 1.96 in 2008. It then fell again to 1.94 in 2009.

The Total Fertility Rate for the CGT area is derived from an analysis of the 2008-based Population Projections. It is expected that the TFR across the three local authority areas will change as follows between 2010 and 2031:

Page 166

Figure 5.10 Total Fertility Rates in JCS Area, 2010-2031

Source: NLP Analysis of PopGroup Outputs

Mortality

The Standard Mortality Rate (SMR) is a measure of the number of deaths in some population, scaled to the size of that population, per unit time. It is typically expressed as a number of deaths per 1,000 individuals per year. PopGroup makes use of a single SMR figure for all persons rather than separate figures for males and females.

The Standard Mortality Rate for the three local authority areas is again derived from an analysis of the 2008-based Population Projections. It is expected that the SMR for the three areas will fall between 2010 and 2031 as follows:

Figure 5.11 Standard Mortality Rates in JCS Area, 2010-2031

[^14]
Page 167

This reduction in mortality rates coincides with the increase in life expectancy from 81.5 to 84 years over the JCS area across the JCS period.

Migration

The net balance between in- and out-migration represents another key determinant upon population levels and the scale of growth within a local authority area. It can be subject to substantially greater fluctuations than natural change and can be influenced by economic, political and housing factors, as well as by personal choice.

Domestic Migration

There is no single system to record population movements between local authorities within England and Wales or moves between UK constituent countries. Internal migration figures and forecasts are therefore derived using administrative data as proxy sources:

1 National Health Service Central Register (NHSCR)

The NHSCR received notification when a patient in England and Wales transfers to a new NHS doctor within a different health authority area. Data on such reregistrations is used as proxy indicators for movements between local authorities in the UK. The former local health authority areas are broadly although not entirely - analogous with local authority boundaries. Estimates derived from NHSCR data are considered to give the most comprehensive coverage of the population and to provide the most reliable indicator of internal migration within the UK.

2 GP Patient Register Data System (PRDS)

PRDS data is used to estimate internal migration at a smaller geographical level. A comparison of PRDS data for consecutive years allows an estimate to be made of people that have moved to a different postcode area. An internal migrant is defined as a person that has changed their area of residence between one year and the next.

3 Higher Education Statistics Agency (HESA)

A weakness of reliance on GP registration changes is that some people - in particular, young men - can be slow to change register with a new GP when they move. One of the main causes of migration amongst young people is to attend a higher education establishment. For this reason, Higher Education Statistics Agency (HESA) data is used to supplement patient registration data to improve the estimation of higher education students - and hence, internal migration flows.

Recognising that students and former students will eventually re-register with a GP, an adjustment is made to prevent double-counting.

The UK migration figures include long and short distance population movements. Short distance movement that involve crossing a local authority boundary would therefore be counted as a UK migration. Such movements are

Page 168

expected to account for a large proportion of the total UK migration flows. An appreciation of this flow is particularly helpful in understanding the scale of netout UK migration from many areas where housing supply and house price pressures over recent years might have resulted in large numbers of people moving to adjoining local authority areas in order to access suitable housing. Such flows also tend to be associated with increased levels of in-commuting.

UK migration rates include cross border migration. This is the level of migration between England, Wales, Scotland and Northern Ireland.

International Migration

Estimates and forecasts of long-term international migration are taken from 3 sources:

1 International Passenger Survey (IPS)

Data on the number of people intending to enter or leave England and Wales for a period of at least 12 months is obtained from the IPS. This is a voluntary sample survey of passengers travelling through the main UK airports, seaports and the Channel Tunnel. It identifies migrants and their towns of destination or residence prior to departure.

The IPS is intention-based and does not initially take account of any changes in intention. Using the LFS in conjunction with the IPS therefore provides a more accurate estimate and forecast of the location and destination of migrants.

2 Labour Force Survey (LFS)

The LFS is a quarterly sample survey of private households in the UK. It is intended to provide information on the UK labour market but also provides the basis for estimates of international migration that might already have occurred. Local authority estimates are achieved by supplementing LFS data with:
i National Insurance numbers;
ii GP registrations to overseas nationals and armed forces; and,
iii Population estimates by ethnic group.

3 Home Office data on asylum seekers

The IPS does not include asylum seekers entering or leaving the UK. Information on the number of asylum seekers that remain in the UK for more than 12 months is collected by the Immigration and Nationality Directorate of the Home Office. Information is collated for:
i Those who applied for asylum;
ii Those who were refused asylum;
iii Those who appealed against their asylum decision;
iv Those who returned home; and,
v Those who withdrew their application.

Page 169

As there is no age or gender-specific information about international migration flows, it is not possible to establish Age Specific Migration Rates for a particular local authority area.

There has been considerable discussion regarding future international migration flows into the UK. NLP has undertaken research into this issue and has found that there is clear evidence to show that high levels of international migration will continue in the future.

Household Vacancy

In any area, it is expected that housing vacancies and second homes will result in the number of dwellings exceeding the number of households. In establishing future projections, it is likewise expected that the dwelling requirement will exceed the household forecast.

A level of transactional housing vacancy is required to ensure the effective operation of any housing market. The minimum level of transactional vacancy that is required is normally viewed as 3%. In areas of very low vacancy, it might therefore be appropriate to seek to increase the vacancy level to this figure.

A high level of long term vacancy (more than 6 months) represents an inefficient use of the existing stock and, so far as possible, should be addressed. Reducing the housing vacancy rate can be an important mechanism by which part of the emerging household requirement can be addressed without requiring such a high level of new house building. Bringing empty houses into active use can, however, be difficult to achieve and there tend not to be any local policies which set out clear targets for reductions in housing vacancy level.

Second home ownership is a common characteristic in many parts of the UK particularly in those areas that are popular tourist destinations. Such dwellings would not be the primary residence of their owners and might be vacant for some (or much) of the year.

Vacancy and second homes rate can be calculated using Census Data. This data is provided on a local-authority basis and for the purposes of this analysis, it is assumed that the vacancy rate within each local authority area will reflect the figure for that local authority.

Page 170
Review of Representations
Appendix 4
Response
$\left.\left.\begin{array}{l|l}\text { The reality is that over the next } 20 \text { years, the population of the }\end{array}\right] \begin{array}{l}\text { JCS area will increase by both natural change and net in- } \\ \text { migration. The JCS cannot do anything to turn this tide and } \\ \text { should plan for the likely housing requirements that will emerge. }\end{array}\right\}$

Page 172

migration rates would be undesirable and damage the local environment (1249).	understand the implications of different levels of growth and the level of development that is required. Consideration of supply is also taken into account in order to ensure that the necessary level of development would not have adverse environmental impacts.
Past migration levels reflect constrained levels of growth and so past trend based scenarios serve to perpetuate historic supply issues. (DK, 1575)	The analysis considers different periods as a basis for the past trend analysis and set these against alternative growth options.
There is a risk that you would never have enough housing as the popularity of CGT means that more housing will be able to accommodate more people and will therefore encourage more people into the area. (480)	There is no clear evidence to show that increasing the housing supply would necessarily stimulate demand. Rather, housing provision should respond to known drivers of demand. By addressing housing and economic matters in an aligned manner, it will be possible to ensure that adequate provision of housing.
New housing encourages household formation and further inward migration. This suggests that further housing provision now will simply serve to increase future demand. (1025)	This is important in highlighting the futility of seeking to restrict net in-migration through the planning process (i.e. supply of housing).
The most prudent course of action would be to develop a strategy that reflects the economic aspirations of the area and past trends, together with the physical capacity of the area to accommodate change. A balance needs to be drawn but that must be set at a reasonable level.	
Out-migration of people in their 20s creates issues regarding a loss of skills and resultant economic problems which might make it harder to attract businesses into the area and for businesses to develop and grow as they would like to. (275)	This highlights the importance of considering housing and economic issues together and points towards the need for new housing in order to help support and sustain the local economy - both in its own right and to accommodate workers.

$\left.\begin{array}{l|l|}\hline \text { The high level of in-migration of older people into Cheltenham is } & \begin{array}{l}\text { This is not the case as may older in-migrants are likely to be } \\ \text { better able to compete in the housing market and therefore } \\ \text { ligigration levels not likely to be constrained by housing supply. } \\ \text { Rather, housing supply would have a disproportionate impact } \\ \text { upon local and younger people who are typically less able to } \\ \text { compete in the market. }\end{array} \\ \hline \begin{array}{l}\text { The suggestion seems to be that the "overall trend for JCS area } \\ \text { towards ageing population" is set in stone. The strategy should } \\ \text { seek to prevent too many retired people from moving into } \\ \text { Cheltenham. (275, 1503) }\end{array} & \begin{array}{l}\text { The trend towards an ageing population is happening at a } \\ \text { national and local level and is clearly evidenced. }\end{array} \\ \text { It is not possible to control the in-migration of certain groups of } \\ \text { people and, in any event, this is not a planning matter. The JCS } \\ \text { should seek to deliver an adequate supply of housing in order to } \\ \text { meet future needs and to prevent any adverse economic or } \\ \text { social implications. }\end{array}\right]$

Page 174

	planning system is unable to control in-migration levels but that it can ensure that a shortage of housing does not have an adverse impact upon the local economy and the well-being of existing communities.
No consideration has been given to the nature of occupation of migrant households. For example, international migrants will predominantly be taking short term work with tied accommodation or shared multi-occupancy. The JCS should not assume that permanent accommodation needs should be provided for a transitory workforce. (2622)	There is no evidence to support this suggestion. A larger component of migration relates to domestic movements.
What would the impact of the migration cap be upon future housing need within CGT? $(1061,1356)$	The impact is expected to be very limited given the limited scope of the migration cap and also given the fact that the largest component of migration is domestic movements.
Household size is not decreasing as fast as predicted. It might even be increasing, driven by economic factors $(275,1053)$: vi There is plenty of spare capacity within existing dwellings which creates an opportunity to increase average household size; vii More young people are living with parents for longer; and, viii Larger families are leading to larger average household sizes. The fact that people are living for longer does not necessarily mean that there would be an increase in single person households. (1503)	Average household size is falling, driven by a wide range of social and demographic factors including: i More people living alone; ii People starting families at a later age and consequently tending to have fewer children; iii An increasing family level of breakdown; and, iv An increased life expectancy. It is not within the scope of the JCS to seek to shape average households sizes. Any efforts to do so through controlling the supply of dwellings will not be successful and will serve to exacerbate economic imbalances and difficulties.
The analysis does not take account of household dissolution e.g. people dying, moving into care or moving away from the	The analysis does take full account of these issues. The number of people moving out of the area is considered through

area. (1356)	the assessment of net migration. Household dissolution is considered through the application of household headship rates by age cohort on an annual basis and through the application of an allowance for the number of people that are not in households (again, on an annual basis) (2008 CLG household projection).
The ratio of people to households is incorrect. A figure of 1.225	An error in arithmetic has resulted in this conclusion being drawn. The figure of 1.225 relates population change to household change. However, this ignores changes within the existing population. The calculation should apply total population to the total number of households.
1399)	The area is characterised by a very low level of vacancy and it is not considered that a further reduction could reasonably be incorporated into the housing assessment.
Inadequate consideration has been given to the potential reduction in the number of vacancies. (1356)	This is reflected in consideration of the labour/employment implications of different scenarios and also through the specific testing of the housing implications of the JCS employment
projections.	

Page 176

	objective; it should also seek to increase the overall well-being of the area. This will include the creation of additional jobs (beyond existing local need) and might also include different jobs (i.e. in sectors that are not suited to those already in the labour market).
The economic forecasts are not reliable - they only go up to 2020 and should be reviewed in the context of more up-to-date evidence. (1399)	We have now considered the implications of the CE projections that informed the 2011 NLP economic report.
Development must be driven by demand. (275, 1503)	It is, hence the reviews of different drivers of demand and a consideration of key demographic, social and economic trends.
(480)	

Page 177
$\left.\begin{array}{l|l|}\hline \begin{array}{l}\text { lots of people would leave the area (especially those of working } \\ \text { age), that it would just be retired people left and that it would } \\ \text { lead to overcrowding. Why is this? (1356) }\end{array} & \begin{array}{l}\text { market which would favour those most able to compete. } \\ \text { Invariably this would be the older, better off in-migrants. Those } \\ \text { local people that are less able to compete would then be forced } \\ \text { to relocate - resulting in economic implications for the area. } \\ \text { Those that cannot relocate might need to share space with } \\ \text { friends/family, resulting in overcrowding. This is not }\end{array} \\ \text { scaremongering but rather the very real implications arising } \\ \text { from a failure to provide adequate new housing within the JCS } \\ \text { area. }\end{array}\right]$

Page 178

Page 179

Appendix 5

Housing Delivery in the JCS
 Area

A key priority of the NPPF is to boost the supply of housing. In order to help realise this aspiration, paragraph 47 states that local planning authorities should identify (and update on an annual basis) a supply of deliverable housing in order to provide five years worth of housing against their housing requirements. In addition, the NPPF requires a buffer of 5\% to be applied to ensure choice and competition in the market for land. In those areas where there has been a record of persistent under delivery of land the buffer should be increased to 20% to provide a realistic prospect of achieving the planned supply.

The implication of this policy requirement is that the supply of housing within each local authority component of the JCS area should be adequate to exceed the requirement level by 5% or 20% as applicable.

In the light of this, the purpose of this section is to examine past supply across the JCS area in order to examine whether a 5\% or a 20% uplift rate should be applied. NLP has reviewed housing completions within each of the three authorities over the period from 2001 to 2011.This is intended to provide a long term view of delivery and therefore to provide a robust justification for the application of a 5% or a 20% buffer.

Housing Delivery in Cheltenham, Gloucester and Tewkesbury

At present, there is no official guidance regarding the definition of "persistent under delivery" and it is likely that this will be subject to differing opinions which will need to be tested at the JCS examination. Initial Inspector's decisions have tended to require evidence of persistent under delivery over a full 5 year period in order to justify the application of a 20% uplift.

As set out below, the level of housing completion within the JCS area has fluctuated substantially. The level of delivery in Gloucester and Tewkesbury peaked in 2007-8, at the height of the housing market, whilst the largest number of completions in Cheltenham occurred in 2006-7 and then fell substantially. The fact that housing completions were falling in Cheltenham at a time when the market was still growing suggests supply-side problems which will need to be taken into consideration through the JCS process.

Page 180

Figure 5.12 Past housing completions in Cheltenham, Gloucester and Tewkesbury

In addition to considering actual development rates, a potentially more useful form of analysis sets this against housing requirements in order to demonstrate any over- or under-supply. As shown below, this analysis highlights a persistent under-supply in Tewkesbury which has failed to meet its housing requirements in every year since 2001. By contrast, the housing requirements have been met in each year since 2003-4 in Gloucester City, including during the recent period of recession. The situation in Cheltenham has been rather more mixed, with an over-supply of housing (compared to requirement levels) between 2001 and 2006-7, followed by an increasing under-supply between 2007 and 2011.

Figure 5.13 The Difference between Housing Completions and Requirements across Cheltenham, Gloucester and Tewkesbury Joint Authority Area

Page 181

Source: JCS Area Monitoring Data

Cheltenham

Over the period from 2001 to 2012, the total number of housing completions in Cheltenham has exceeded the total requirements by 385 units (109\%). However, over the past 4 years, housing completions have fallen substantially, down to just 36 in 2011-12. The result of this has been a total under-supply of 892 units over this period, with supply equating to just 45% of the requirements.

Of particular note, the level of under-delivery in Cheltenham is worsening. In 2008-9 and 2009-10, supply equated to 69% of the requirements. However, in 2010-11, supply had fallen to 34% of the requirements whilst in 2011-12, less than 10% of the required number of dwellings were delivered.

In the light of this, NLP considers that there is clear evidence of persistent under-delivery in Cheltenham and that a 20% buffer should therefore be provided to ensure future supply and choice.

Figure 5.14 Cheltenham Housing Completions against Identified Housing Requirement

Source: JCS Area Monitoring Data

Gloucester

Over the period from 2001 to 2012, the total number of housing completions in Gloucester has exceeded the total requirements by 670 units (110\%). However, this overall figure is skewed by an under-delivery of 715 units between 2001 and 2003 , which equated to the delivery of just 53% of requirements.

Since 2003, housing completions in Gloucester have exceeded supply by a total of 1,400 units (130%) and even though supply fell substantially between

Page 182

2007-8 and 2008-9, the number of new houses that have been delivered in Gloucester City has remained above the requirement level (107\%).

In the light of this, it is evident that Gloucester has consistently met its housing requirements. As such, future supply should be based on the application of just a 5% buffer to ensure choice and competition in the market.

Figure 5.15 Gloucester Housing Completions Against Identified Housing Requirement

Source: JCS Area Monitoring Data

Tewkesbury

There has been an under-supply in housing in Tewkesbury in each year since 2001. Over the period from 2001 to 2012, the total number of housing completions in Tewkesbury has been 2,350 below the number required. This equates to a delivery rate of just 64\%.

Given that Tewkesbury's housing completions have consistently fallen short of their housing requirements between 2001 and 2011, a buffer of 20% is therefore needed in identifying deliverable housing sites within the Borough over the next 5 years.

Page 183

Figure 5.16 Tewkesbury Housing Completions Against Identified Housing Requirement

Source: JCS Area Monitoring Data

Implications for the JCS

Although the JCS will contain a single housing requirement figure, it will also provide a requirement figure for each of the individual local authority areas. Moreover, a separate 5 year supply will be calculated and applied for each area. This will be important to ensure that an appropriate distribution of housing can be achieved across the JCS area. In the light of evidence relating to past completions, we would be concerned that a single 5 year requirement figure might result in the delivery being skewed away from individual areas, to the detriment of the overall supply.

In the light of this, it is appropriate to apply individual buffer levels, based upon the history of housing supply in each local authority area. This will reflect the importance that the NPPF applies to boosting the housing supply in each local authority area. This analysis has shown that the housing supply within each of the constituent JCS local authority areas should be calculated on the following basis:

Table 5.19 Housing Supply Buffer Requirements

LA Area	Buffer
Cheltenham	20%
Gloucester	5%
Tewkesbury	20%

Page 184

The 5\% and 20\% buffers would not affect the actual housing need in each area but would require the supply to be increased in order to ensure that the objectively assessed housing need can be achieved. Consideration of how best to actually meet the housing requirement will be subject to further analysis by the JCS team and falls outside of the scope of this study

Page 185

Appendix 6
 Summary of Results for Each Local Authority

Cheltenham

Table 5.20 Summary of Scenario Outputs: Cheltenham

	Demographic Led					Economic Led	
	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \text { No } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$					山	
Pop Change	15,400	11,400	12,200	7,400	11,900	$\begin{gathered} 26,700- \\ 28,100 \end{gathered}$	$\begin{gathered} 22,000- \\ 23,400 \end{gathered}$
Natural Change	6,400	7,400	7,900	7,400	7,400	$\begin{aligned} & 9,700- \\ & 10,000 \end{aligned}$	$\begin{gathered} 9,300- \\ 9,600 \end{gathered}$
Net Migration	9,000	4,000	4,300	0	4,500	$\begin{gathered} 17,000- \\ 18,100 \end{gathered}$	$\begin{gathered} 12,700- \\ 13,900 \end{gathered}$
Dwelling Change	11,000	8,300	8,300	7,200	8,700	$\begin{gathered} 15,200- \\ 15,900 \end{gathered}$	$\begin{gathered} 12,600- \\ 13,300 \end{gathered}$
Dwellings p.a.	550	415	415	360	4,400	$\begin{gathered} 760- \\ 800 \end{gathered}$	$\begin{gathered} 630- \\ 665 \end{gathered}$
Jobs	$\begin{gathered} 4,000- \\ 4,800 \end{gathered}$	$\begin{gathered} 1,500- \\ 2,200 \end{gathered}$	$\begin{aligned} & 750- \\ & 1,500 \end{aligned}$	$\begin{aligned} & -1,200- \\ & -1,800 \end{aligned}$	$\begin{gathered} 1,600- \\ 2,400 \end{gathered}$	10,150	6,900

Source: CLG Household Projections / NLP Analysis of PopGroup Outputs

Page 186

Gloucester

Table 5.21 Summary of Scenario Outputs: Gloucester

	Demographic Led					Economic Led	
				$\frac{\stackrel{c}{\frac{c}{1}}}{\frac{0}{0}}$		せ	
Pop Change	19,400	19,700	24,200	15,700	18,700	$\begin{gathered} 21,400- \\ 23,300 \end{gathered}$	$\begin{gathered} 17,000- \\ 18,900 \end{gathered}$
Natural Change	15,400	15,700	15,600	15,700	15,700	$\begin{gathered} 13,900- \\ 14,200 \end{gathered}$	$\begin{gathered} 13,000- \\ 13,300 \end{gathered}$
Net Migration	4,000	4,000	8,600	0	3,000	$\begin{gathered} 7,500- \\ 9,100 \end{gathered}$	$\begin{gathered} 4,000- \\ 5,600 \end{gathered}$
Dwelling Change	12,400	11,900	13,700	9,200	11,500	$\begin{gathered} 12,400- \\ 13,200 \end{gathered}$	$\begin{gathered} 10,200- \\ 11,400 \end{gathered}$
Dwellings p.a.	620	595	685	460	575	$\begin{gathered} 620- \\ 660 \end{gathered}$	$\begin{gathered} 510- \\ 570 \end{gathered}$
Jobs	$\begin{gathered} 6,300- \\ 7,500 \end{gathered}$	$\begin{gathered} 5,600- \\ 6,800 \end{gathered}$	$\begin{gathered} 7,700- \\ 9,000 \end{gathered}$	$\begin{gathered} -50- \\ -1,200 \end{gathered}$	$\begin{gathered} 4,000- \\ 5,200 \end{gathered}$	7,900	5,200

Source: CLG Household Projections / NLP Analysis of PopGroup Outputs

Page 187

Tewkesbury

Table 5.22 Summary of Scenario Outputs: Tewkesbury

	Demographic Led					Economic Led	
						Ш	
Pop Change	19,500	13,600	10,700	1,300	11,800	$\begin{gathered} 25,200- \\ 26,100 \end{gathered}$	$\begin{gathered} 15,000- \\ 15,900 \end{gathered}$
Natural Change	15,400	1,300	-200	1,300	1,300	$\begin{gathered} 1,700- \\ 1,900 \end{gathered}$	$\begin{gathered} 500- \\ 600 \end{gathered}$
Net Migration	4,000	12,300	10,900	0	10,500	$\begin{gathered} 23,400- \\ 24,200 \end{gathered}$	$\begin{gathered} 14,500- \\ 15,300 \end{gathered}$
Dwelling Change	12,400	8,200	7,600	1,600	7,300	$\begin{gathered} 13,700- \\ 14,100 \end{gathered}$	$\begin{gathered} 9,300- \\ 9,700 \end{gathered}$
Dwellings p.a.	620	410	380	80	365	$\begin{gathered} 685- \\ 705 \end{gathered}$	$\begin{gathered} 450- \\ 485 \end{gathered}$
Jobs	$\begin{gathered} 6,300- \\ 7,500 \end{gathered}$	$\begin{gathered} 2,000- \\ 2,500 \end{gathered}$	$\begin{gathered} 1,100 \\ 1,500 \end{gathered}$	$\begin{aligned} & -3,100 \\ & -3,500 \end{aligned}$	$\begin{aligned} & 600- \\ & 1,100 \end{aligned}$	9,000	3,500

Source: CLG Household Projections / NLP Analysis of PopGroup Outputs

Page 188

Page 189

Appendix 7

PopGroup Output Sheets

Population Estimates and Forecasts							CE EMPLOYMENT LED													
Components of Population Change						Chet, Glouc, Tewkes														
Year beginning July 1st ...																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male	2,076	2,098	2,088	2,062	2,042	2,041	2,055	2,067	2,089	2,115	2,145	2,175	2,197	2,223	2,248	2,266	2,288	2,316	2,345	2,372
Female	1,978	1,998	1,989	1,964	1,945	1,944	1,957	1,969	1,990	2,014	2,043	2,072	2,092	2,117	2,141	2,159	2,179	2,206	2,233	2,259
All Births	4,054	4,095	4,077	4,026	3,988	3,985	4,013	4,036	4,079	4,129	4,188	4,247	4,289	4,340	4,389	4,425	4,468	4,522	4,578	4,631
TFR	2.11	2.13	2.11	2.08	2.05	2.03	2.01	1.99	1.98	1.97	1.96	1.95	1.95	1.94	1.93	1.92	1.92	1.92	1.92	1.92
Deaths																				
Male	1,342	1,328	1,347	1,361	1,355	1,364	1,373	1,387	1,402	1,415	1,434	1,451	1,473	1,494	1,519	1,543	1,572	1,600	1,626	1,656
Female	1,461	1,449	1,446	1,445	1,441	1,433	1,431	1,431	1,433	1,435	1,443	1,453	1,464	1,475	1,489	1,508	1,528	1,550	1,573	1,602
All deaths	2,803	2,777	2,793	2,806	2,796	2,797	2,804	2,818	2,835	2,850	2,876	2,904	2,937	2,969	3,008	3,051	3,101	3,150	3,200	3,258
SMR: males	93.3	89.9	88.6	87.2	84.6	82.7	80.9	79.4	77.9	76.2	74.8	73.4	72.3	71.0	70.0	68.9	68.0	67.1	66.3	65.5
SMR: females	93.6	91.1	89.2	87.5	85.6	83.7	81.9	80.2	78.5	76.8	75.3	73.8	72.4	71.0	69.7	68.5	67.4	66.3	65.2	64.4
SMR: male \& female	93.5	90.5	88.9	87.3	85.1	83.2	81.4	79.8	78.2	76.5	75.0	73.6	72.3	71.0	69.8	68.7	67.7	66.7	65.8	65.0
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	8,348	8,427	8,361	8,346	8,508	8,598	8,578	8,630	8,663	8,721	8,745	8,682	8,693	8,728	8,708	8,709	8,705	8,716	8,704	8,694
Female	9,082	9,164	9,096	9,085	9,248	9,367	9,361	9,397	9,408	9,466	9,485	9,416	9,447	9,474	9,448	9,440	9,437	9,465	9,463	9,471
All	17,430	17,591	17,457	17,431	17,757	17,964	17,939	18,027	18,071	18,187	18,230	18,098	18,139	18,202	18,155	18,149	18,142	18,182	18,168	18,166
SMigR: males	50.4	50.7	50.0	49.8	50.7	50.9	50.2	50.1	49.8	49.6	49.2	48.1	47.7	47.3	46.6	46.0	45.4	44.9	44.2	43.6
	54.4	54.6	53.9	53.7	54.6	55.0	54.4	54.2	53.7	53.6	53.1	52.1	51.7	51.3	50.4	49.6	48.8	48.3	47.5	46.8
Migrants input																				
Out-migration to the UK																				
Male	8,136	8,045	8,106	8,112	7,954	7,851	7,857	7,812	7,798	7,743	7,721	7,793	7,768	7,745	7,772	7,779	7,784	7,750	7,753	7,744
Female	8,843	8,774	8,847	8,867	8,700	8,595	8,614	8,571	8,541	8,480	8,459	8,519	8,503	8,463	8,483	8,482	8,483	8,478	8,489	8,501
All	16,980	16,819	16,953	16,979	16,653	16,446	16,471	16,383	16,339	16,223	16,180	16,312	16,271	16,208	16,255	16,261	16,268	16,228	16,242	16,244
SMigR: males	49.1	48.4	48.5	48.4	47.4	46.5	46.0	45.4	44.8	44.1	43.4	43.2	42.6	42.0	41.6	41.1	40.6	39.9	39.4	38.8
SMigR: females	52.9	52.3	52.4	52.4	51.3	50.4	50.1	49.4	48.8	48.0	47.3	47.1	46.6	45.8	45.3	44.6	43.9	43.2	42.6	42.0
Migrants input																				
In-migration from Overseas																				
Male	1,294	1,377	1,303	1,288	1,461	1,570	1,556	1,602	1,626	1,690	1,714	1,644	1,663	1,695	1,669	1,666	1,662	1,682	1,672	1,671
Female	1,137	1,214	1,154	1,143	1,296	1,394	1,383	1,425	1,444	1,497	1,517	1,455	1,476	1,507	1,486	1,483	1,480	1,500	1,496	1,495
All	2,430	2,591	2,457	2,431	2,757	2,964	2,939	3,027	3,071	3,187	3,230	3,098	3,139	3,202	3,155	3,149	3,142	3,182	3,168	3,166
SMigR: males	112.2	119.2	112.2	110.7	125.6	134.0	131.5	134.1	134.9	138.8	139.3	132.0	132.4	133.8	130.3	128.7	126.9	127.0	124.7	123.0
SMigR: females	101.9	108.3	102.2	100.8	114.2	122.0	119.7	122.3	122.6	125.9	126.1	119.6	120.4	121.9	118.9	117.4	115.8	115.9	113.9	112.2
Migrants input																				
Out-migration to Overseas																				
Male	1,378	1,286	1,356	1,368	1,186	1,069	1,082	1,032	1,007	942	917	989	967	931	955	957	960	937	945	944
Female	1,105	1,037	1,101	1,116	972	880	893	855	836	785	767	826	808	781	804	807	812	795	802	804
All	2,484	2,323	2,457	2,483	2,157	1,950	1,975	1,887	1,843	1,727	1,684	1,816	1,775	1,712	1,759	1,765	1,772	1,732	1,746	1,748

Components of Population Change						Cheltenham														
Year beginning July 1st ...																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	712	719	720	717	714	718	728	736	752	767	783	798	810	826	837	845	855	866	876	885
Female	678	685	686	683	680	684	693	701	716	730	745	760	772	787	797	804	815	825	834	843
All Biths	1,390	1.405	1,406	1,400	1,393	1,401	1,421	1,438	1,468	1,497	1,528	1,559	1,582	1,613	1.634	1,649	1,670	1,690	1,709	1,728
TFR	1.98	2.00	1.99	1.97	1.95	1.93	1.91	1.89	1.88	1.87	1.86	1.85	1.84	1.84	1.83	1.82	1.82	1.82	1.82	1.82
Births input																				
Deaths																				
Male	471	460	466	470	474	475	474	478	482	486	492	495	501	507	515	522	530	540	549	558
Female	550	546	542	534	534	530	525	521	520	519	519	522	523	526	529	534	539	546	552	561
All deaths	1,021	1,006	1,008	1,004	1,008	1,004	1,000	999	1,002	1,005	1,011	1,017	1,024	1,033	1.044	1,056	1,069	1,085	1,101	1,119
SMR: males	88.1	83.9	82.6	81.1	79.9	77.9	75.9	74.5	73.2	71.6	70.5	69.0	67.8	66.6	65.7	64.7	63.8	63.1	${ }^{62.3}$	61.7
SMR: females	89.4	87.7	85.8	83.0	82.0	80.2	78.3	76.5	75.0	${ }^{73.3}$	71.7	70.4	69.0	67.8	66.5	65.3	64.2	63.3	${ }^{62.3}$	61.5
SMR: male \& female	88.8	85.9	84.3	82.1	81.0	79.1	77.1	75.5	74.1	72.5	71.1	69.7	68.4	67.2	66.1	65.0	64.0	63.2	${ }^{62.3}$	61.6
Expectation of life	81.9	82.2	82.3	82.5	82.6	82.8	83.0	83.1	83.2	83.3	83.4	83.6	83.7	83.8	83.9	84.0	84.1	84.2	84.2	84.3
Deaths input																				
In-migration from the UK																				
Male	3,401	3,424	3,410	3,378	3,438	3,457	3,427	3,455	3,459	3,462	3,463	3,437	3.445	3,446	3,436	3,433	3,428	3,430	3,423	3,407
Female	3,750	3,780	3,777	3,762	3,836	3,900	3,891	3,917	3,913	3,937	3,950	3,931	3,960	3,966	3,956	3,953	3,956	3,975	3,987	3,978
All	7,151	7,205	7,187	7,141	7,274	7,357	7,318	7,372	7,372	7,400	7,413	7,369	7,405	7,412	7,392	7,386	7,384	7,404	7,410	7,385
SMigR: males	54.7	54.9	54.3	53.6	54.5	54.4	53.4	53.5	53.0	52.6	52.1	51.1	50.8	50.4	49.6	49.1	48.5	48.1	47.4	46.6
SMigR: females	59.4	59.2	58.5	57.7	58.6	59.1	58.4	58.2	57.5	57.4	57.0	56.1	56.1	55.6	54.7	53.8	53.0	52.5	51.8	50.9
Migrants input		*	*	*	*	*	*	*	*	*		*	*				*			
Out-migration to the UK																				
Male	3,366	3,326	3,326	3,338	3,266	3,217	3,225	3,195	3,199	3,182	3,168	3,193	3,169	3,169	3,180	3,182	3,183	3,161	3,149	3,155
Female	3,711	3,698	3,715	3,749	3,688	3,654	3,685	3,661	3,657	3,646	3,647	3,666	3,654	3,647	3,656	3,660	3,661	3,663	3,669	3,688
All	7,077	7,023	7,041	7,087	6,954	6,871	6,910	6,856	6,856	6,828	6.815	6,859	6,823	6,816	6,836	6,842	6,844	6,824	6,818	6,843
SMigR: males	54.1	53.3	53.0	53.0	51.8	50.7	50.3	49.5	49.0	48.4	47.7	47.5	46.7	46.3	46.0	45.5	45.1	44.3	43.6	43.2
SMigR: females	58.8	58.0	57.5	57.5	56.3	55.4	55.3	54.4	53.7	53.2	52.6	52.3	51.8	51.1	50.5	49.8	49.1	48.4	47.7	47.2
Migrants input	*	*	*	*	*	*	*	*	-	*	*	*	*		*		*	*		
In-migration from Overseas																				
Male	757	782	770	744	813	854	832	857	857	871	878	855	871	872	860	856	854	864	865	851
Female	673	702	696	676	741	782	765	793	794	807	814	793	813	819	811	809	809	820	824	813
All	1,430	1,484	1,466	1,420	1,553	1,636	1,597	1,651	1,651	1,679	1,692	1,648	1,684	1,691	1.671	1,665	1,663	1,683	1,689	1,664
SMigR: males	171.6	176.8	173.3	166.9	182.6	190.7	183.8	188.4	186.8	188.4	188.3	181.8	184.4	183.5	17.4	177.3	175.7	176.3	174.7	169.9
SMigR: females	161.7	166.5	162.7	156.2	170.0	177.3	170.8	174.9	172.6	173.6	173.3	166.7	169.6	169.5	166.3	164.3	162.5	162.9	161.4	156.9
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Out-migration to Overseas																				
Male	748	715	721	743	667	620	641	610	609	593	585	609	589	584	594	596	597	585	581	594
Female	594	573	585	609	551	515	534	511	512	500	495	515	499	497	507	511	512	504	502	514
All	1,342	1,288	1,306	1,352	1,219	1,136	1,175	1,121	1,121	1,093	1,080	1,124	1,088	1,081	1,101	1,107	1,109	1,089	1,083	1,108
SMigR: males	169.6	161.7	162.2	166.7	149.9	138.6	141.6	134.0	132.6	128.2	125.5	129.5	124.6	122.9	124.0	123.5	122.7	119.3	117.3	118.6
SMigR: females	142.7	136.1	136.7	140.7	126.5	116.8	119.1	112.8	111.4	107.6	105.2	108.3	104.2	102.9	104.0	103.7	103.0	100.2	${ }_{98} 9$	99.1
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	.	*	.	*	*		

Migration - Net Flows																							
UK	+74	+181	+146	+54	+321	+486	+408	+515	+516	+571	+598	+510	+582	+596	+555	+544	+540	+581	+592	+542			
Overseas	+88	+195	+160	+68	+335	+500	+422	+529	+530	+585	+612	+524	+596	+610	+569	+558	+554	+595	+606	+556			
Summary of population change																							
Natural change	+370	+398	+398	+396	+385	+397	+421	+438	+466	+492	+517	+542	+558	+581	+590	+593	+601	+605	+609	+609		+9,965	
Net migration	+162	+377	+307	+122	+656	+987	+831	+1,044	+1,046	+1,156	+1,211	+1,034	+1,178	+1,206	+1,124	+1,102	+1,093	+1,176	+1,199	+1,099		+18,107	
Net change	+531	+775	+705	+518	+1,041	+1,383	+1,252	+1,483	+1,512	${ }^{+1,648}$	+1,728	+1,575	+1,735	+1,786	+1,714	+1,695	+1,694	${ }^{+1,781}$	+1,807	+1,707		+28,071	
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	6,525	6,673	6,782	6,894	6,935	6,979	7,022	7,055	7.110	7,195	7,311	7,449	7,586	7,732	7,879	8,013	8,130	8,238	8,348	8.447	8,539		
5-10	6,713	6,745	6,996	7,114	7,316	7.572	7,892	8.083	8,218	8,355	8,440	8.518	8,584	8,651	8,741	8,859	9,001	9,160	9,325	9,501	9,664		
11-15	6,641	6,488	6,200	6,131	6,104	6,032	5,938	6.149	6,286	6,464	6,717	7,033	7,213	7,335	7.475	7,550	7,607	7,649	7.691	7.747	7.833		
16-17	3,212	3,243	3,153	3,049	2.851	2,830	2,909	2,740	2,717	2.840	2,782	2,734	2,855	3,124	3,213	3,254	3,333	3,375	3,427	3,458	3,458		
18-59Female, 64Male	66,048	66,060	66,470	66,632	66,769	67,250	67,820	68,391	69,068	69,563	70,256	70,899	71,333	71,758	72,301	72,995	73,599	74,269	75,030	75,806	76,512		
60/65-74	12,830	13,169	13,446	13,768	13,964	14,165	14,418	14,521	14,726	14,938	15,132	15,186	15,312	15,583	15,977	16,302	16,581	16,927	17,167	17,496	17,825		
75-84	6,932	6,954	7,014	7,142	7,202	7,263	7,379	7,596	7,826	7,999	8,226	8,628	9,017	9,282	9,495	9,672	9,903	9,975	10,158	10,291	10,362		
$85+$	3,666	3,766	3.812	3.847	3,954	4.046	4.142	4,235	4.302	4.413	4.549	4.694	4.818	4,988	5,159	5,310	5,495	5,750	5,978	6,185	6.445		
Total	112,567	113,098	113,873	114,578	115,095	116,136	117,520	118,771	120,254	121,766	123,414	125,142	126,717	128,453	130,239	131,953	133,649	135,343	137,123	138,931	140,638	28,071	
Population impact of constraint																							0
Number of persons	-1,230	-52	+163	+93	-92	+442	+773	+617	+830	+832	+942	+997	+820	+964	+992	+910	+888	+879	+962	+985	+885		0
Labour Force																							(1)
Number of Labour Force	${ }^{61,709}$	${ }^{61,822}$	62,073	62,211	${ }^{62,291}$	${ }^{62,733}$	63,265 +532	63,784 +519	${ }^{64,347}$	64,875 +528	${ }^{65,481}$	${ }^{66,119}$	${ }^{66,733}$	67,394	68,089		69,400	$70,117$	70,857	71,608	72,358 +751	10,649	
Change over previous year	-632	+113	+251	+137	+81	+442	+532	+519	+563	+528	+606	$+638$	+614	+661	${ }^{+695}$	$+639$	$+672$	+717	$+740$	$+751$	+751		\square
Number of supply units	54,432	54,532	54,812	54,992	55,122	5,572	56,103	56,623	57,184	57,714	58,315	58,946	59,556	60,146	60,766	61,336	61,936	62,576	63,236	63,906	64,576	10,144	0
Change over previous year	-146	+100	+280	+180	+130	+450	+531	+520	+561	+531	+601	+631	+611	+590	+620	+570	+600	$+640$	+660	+670	+670		ω
Households																							
Number of Households	50,274	50,666	51,162	51,650	52,030	52,615	53,365	54,056	54,850	55,708	56,588	57,474	58,294	59,162	60,078	60,990	61,822	62,749	63,662	64,585	65,399	15,125	
Change over previous year	-84	+393	+496	+488	+380	+584	+750	+692	+794	+858	+880	+885	+821	+868	+915	+912	+832	+927	+912	+923	+814		
Number of supply units	52,998	53,109	53,629	54,141	54,539	55,152	55,938	56,663	57,495	58,394	59,317	60,245	61,105	62,015	62,975	63,931	64,803	65,775	66,732	67,699	68,552	15,854	
Change over previous year	-88	+412	+520	+511	+398	+613	+786	+725	+832	+899	+923	+928	+860	+910	+960	+956	+873	+972	+956	+967	+853		

Components of Population Change						Tewkesbury														
Year beginning July 1st ...																				
Births																				
	45	480	484	485	478	474		4	484	489	495		508	5		525	504	537	543	549
Female	452	457	461	457	455	452	453	456	461	466	472	479	484	488	495	500	504	511	517	522
All Biths	927	937	945	937	934	926	928	935	945	955	967	981	992	1,001	1,016	1,025	1,034	1,048	1,061	1,071
TFR	2.07	2.07	2.06	2.03	2.02	1.99	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.89	1.88	1.87	1.87	1.87	1.87
Births input																				
Deaths																				
Male	383	387	394	396	397	403	408	415	422	429	437	446	456	466	474	485	497	509	520	529
Female	402	402	408	416	414	416	419	423	427	430	436	440	447	453	460	468	477	486	495	506
All deaths	785	789	801	812	811	818	828	838	849	859	872	886	903	918	934	954	974	994	1,015	1,035
SMR: males	91.0	89.0	87.6	85.3	82.7	81.2	79.6	78.2	76.7	75.1	73.7	72.5	71.4	70.4	69.2	68.4	67.7	66.9	66.2	65.3
SMR: females	88.9	86.1	84.7	83.9	81.3	79.6	78.0	76.4	75.0	73.3	71.9	70.3	69.2	67.8	66.6	65.4	64.3	63.1	62.1	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	82.0	80.4	78.8	${ }^{77.3}$	75.8	74.2	72.8	71.4	70.3	69.1	67.9	66.9	66.0	65.0	64.1	${ }^{63} 3$
Expectation of life	81.7	81.9	82.0	82.2	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.3	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.1
Deaths input																				
In-migration from the UK																				
Male	2,381	2,409	2,387	2,375	2,408	2,436	2,464	2,470	2,491	2,517	2,535	2,522	2,516	2,532	2,534	2,547	2,553	2,553	2,548	2,563
Female	2,656	2,671	2,633	2,603	2,623	2,638	2,652	2,639	2,648	2,654	2,657	2,635	2,625	2,625	2,623	2,627	2,628	2,625	2,611	2,628
All	5,037	5,880	5,020	4,978	5,031	5,074	5,116	5,109	5,139	5,170	5,192	5,157	5,141	5,157	5,157	5,175	5,181	5,178	5,159	5,191
SMigR: males	60.0	59.9	58.4	57.4	57.7	57.7	57.5	56.6	56.2	55.8	55.3	53.9	52.9	52.4	51.6	51.1	50.4	49.5	48.7	48.3
SMigR: females	66.4	66.2	64.6	63.5	63.9	63.9	63.6	62.6	62.2	61.6	60.9	59.4	58.5	57.8	56.9	56.1	55.1	54.2	53.0	52.5
Migrants input	-		*	*	*		.	*	*	*	*	*	*	*		*	*			
Out-migration to the UK																				
Male	2,058	2,045	2,079	2,104	2,085	2,070	2,056	2,065	2,057	2,047	2,043	2,065	2,075	2,073	2,075	2,071	2,069	2,069	2,082	2,066
Female	2,342	2,312	2,339	2,355	2,321	2,293	2,265	2,263	2,241	2,219	2,202	2,215	2,221	2,208	2,205	2,191	2,186	2,190	2,196	2,180
All	4,400	4,357	4,417	4,459	4,406	4,363	4,321	4,328	4,298	4,267	4,245	4,280	4,296	4,280	4,280	4,262	4,256	4,259	4,278	4,246
SMigR: males	51.9	50.9	50.8	50.9	50.0	49.0	48.0	47.4	46.4	45.4	44.5	44.1	43.6	42.9	42.3	41.5	40.8	40.2	39.8	38.9
SMigR: females	58.6	57.3	57.4	57.4	56.5	55.5	54.3	53.7	52.7	51.5	50.4	50.0	49.5	48.6	47.8	46.7	45.9	45.2	44.6	43.6
Migrants input	-	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
In-migration from Overseas																				
Male	211	235	204	182	211	235	259	256	274	293	306	287	279	288	289	300	304	302	292	309
Female	185	204	175	155	179	198	216	212	224	237	245	229	222	228	227	234	237	235	226	240
All	396	439	379	337	390	433	475	468	498	529	551	516	500	516	516	534	540	537	518	550
SMigR: males	79.0	86.6	73.6	64.8	74.4	81.8	88.7	86.1	90.7	95.2	97.6	89.9	86.0	87.6	86.8	88.8	88.7	86.9	82.7	86.6
SMigR: females	70.4	77.1	65.3	57.5	66.1	72.7	78.9	76.4	80.1	83.7	85.6	79.0	75.6	77.0	76.0	77.4	${ }^{77 .} 3$	75.6	71.8	75.2
Migrants input		*	*	*		*	*	*	*	*	*	-	*	*	*	*	-			
Out-migration to Overseas																				
Male	88	65	98	122	93	69	46	50	33	15	3	23	32	24	${ }^{23}$	13	9	11	22	4
Female	${ }^{73}$	${ }^{53}$	80	98	74	55	36	39	26	12	3	18	25	18	18	10	7	9	17	3
All	161	118	178	220	167	124	82	89	59	28	,	41	57	41	41	${ }^{23}$	17	20	39	7
SMigR: males	33.1	23.8	35.6	43.4	32.8	24.1	15.6	16.7	10.9	5.0	1.1	${ }^{7.3}$	9.9	7.2	7.0	3.9	2.8	3.3	${ }^{6.3}$	1.1
SMigR: females	27.7	20.0	29.8	36.4	27.5	20.2	13.2	14.2	9.2	4.3	0.9	6.1	8.4	6.1	5.9	3.3	2.3	2.8	5.3	1.0
Migrants input			*	*			*	*	*	*	*	*	*	.	*	*	*	*	.	*

Page 198

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel RunsICGTICheltenham, Gloucester, Tewkesbury
JCS_inplscenario_EMPLOYMENT LED 2.xls
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM11. POPGROUP v3.1 DF Compatible\Model Runs\CGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_EMPLOYMENT LED 2.xls	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 199

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the JOBS Cons2011-35.xls workbook, which was last updated on 08/05/2012
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Page 200
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Components of Population Change						Chet, Glouc, Tewkes														
Year beginning July 1st																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	2,076	2,098	2,088	2,062	2,042	2,041	2,053	2,062	2,080	2,102	2,128	2,155	2,173	2,193	2,210	2,223	2,242	2,267	2,297	2,325
Female	1,978	1,998	1,989	1,964	1,945	1,944	1,955	1,963	1,981	2,002	2,027	2,052	2,069	2,088	2,105	2,117	2,136	2,159	2,187	2,214
All Births	4,054	4,095	4,077	4,026	3,988	3,985	4,008	4,025	4,061	4,104	4,155	4,207	4,242	4,281	4,315	4,341	4,378	4,427	4,484	4,539
TFR	2.11	2.13	2.11	2.08	2.05	2.03	2.01	1.99	1.98	1.97	1.96	1.95	1.95	1.94	1.93	1.92	1.92	1.92	1.92	1.92
Births input																				
Deaths																				
Male	1,342	1,328	1,347	1,361	1,355	1,364	1,373	1,386	1,401	1,414	1,432	1,449	1,471	1,491	1,515	1,539	1,568	1,595	1,621	1,651
Female	1,461	1,449	1,446	1,445	1,441	1,433	1,431	1,430	1,432	1,434	1,441	1,451	1,462	1,472	1,486	1,504	1,524	1,546	1,569	1,597
All deaths	2,803	2,777	2,793	2,806	2,796	2,797	2,803	2,817	2,833	2,848	2,873	2,901	2,933	2,963	3,001	3,043	3,092	3,141	3,190	3,248
SMR: males	93.3	89.9	88.6	87.2	84.6	82.7	80.9	79.4	77.9	76.2	74.8	73.4	72.3	71.0	70.0	68.9	68.0	67.1	66.3	65.5
SMR: females	93.6	91.1	89.2	87.5	85.6	83.7	81.9	80.2	78.5	76.8	75.3	73.8	72.4	71.0	69.7	68.5	67.4	66.3	65.2	64.4
SMR: male \& female	93.5	90.5	88.9	87.3	85.1	83.2	81.4	79.8	78.2	76.5	75.0	73.6	72.3	71.0	69.8	68.7	67.7	66.7	65.8	65.0
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	8,348	8,427	8,361	8,346	8,508	8,578	8,547	8,600	8,633	8,691	8,715	8,652	8,643	8,665	8,662	8,686	8,681	8,715	8,701	8,690
Female	9,082	9,164	9,096	9,085	9,248	9,346	9,328	9,364	9,374	9,432	9,450	9,381	9,389	9,403	9,394	9,411	9,408	9,462	9,459	9,468
All	17,430	17,591	17,457	17,431	17,757	17,924	17,876	17,964	18,007	18,123	18,166	18,033	18,031	18,068	18,056	18,097	18,089	18,176	18,161	18,157
SMigR: males	50.4	50.7	50.0	49.8	50.7	50.8	50.1	50.0	49.8	49.7	49.3	48.3	47.8	47.4	46.9	46.5	45.9	45.5	44.8	44.2
SMigR: females	54.4	54.6	53.9	53.7	54.6	54.8	54.3	54.1	53.7	53.6	53.2	52.2	51.8	51.4	50.7	50.1	49.3	48.9	48.1	47.4
Migrants input																				
Out-migration to the UK																				
Male	8,136	8,045	8,106	8,112	7,954	7,871	7,887	7,843	7,829	7,775	7,753	7,826	7,821	7,812	7,823	7,807	7,813	7,755	7,757	7,748
Female	8,843	8,774	8,847	8,867	8,700	8,615	8,647	8,603	8,573	8,512	8,491	8,551	8,557	8,530	8,532	8,506	8,508	8,479	8,492	8,505
All	16,980	16,819	16,953	16,979	16,653	16,486	16,534	16,446	16,403	16,287	16,244	16,377	16,379	16,342	16,354	16,313	16,321	16,234	16,249	16,253
SMigR: males	49.1	48.4	48.5	48.4	47.4	46.6	46.2	45.6	45.1	44.4	43.8	43.7	43.2	42.8	42.3	41.8	41.3	40.5	40.0	39.4
SMigR: females	52.9	52.3	52.4	52.4	51.3	50.5	50.3	49.7	49.1	48.4	47.8	47.6	47.2	46.6	46.1	45.3	44.6	43.8	43.2	42.6
Migrants input																				
In-migration from Overseas																				
Male	1,294	1,377	1,303	1,288	1,461	1,548	1,523	1,568	1,593	1,656	1,679	1,608	1,605	1,623	1,616	1,638	1,633	1,679	1,668	1,666
Female	1,137	1,214	1,154	1,143	1,296	1,376	1,353	1,396	1,415	1,467	1,487	1,425	1,426	1,445	1,439	1,459	1,456	1,498	1,493	1,491
All	2,430	2,591	2,457	2,431	2,757	2,924	2,876	2,964	3,007	3,123	3,166	3,033	3,031	3,068	3,056	3,097	3,089	3,176	3,161	3,157
SMigR: males	112.2	119.2	112.2	110.7	125.6	132.2	128.7	131.6	132.6	136.7	137.3	130.1	128.9	129.5	127.8	128.3	126.6	128.8	126.3	124.4
SMigR: females	101.9	108.3	102.2	100.8	114.2	120.4	117.2	120.0	120.6	124.0	124.5	118.0	117.3	118.1	116.7	117.3	115.7	117.7	115.5	113.6
Migrants input																				
Out-migration to Overseas																				
Male	1,378	1,286	1,356	1,368	1,186	1,092	1,117	1,067	1,042	977	953	1,026	1,026	1,005	1,010	986	989	940	949	949
Female	1,105	1,037	1,101	1,116	972	898	921	883	865	814	796	856	856	841	849	831	836	797	805	808
All	2,484	2,323	2,457	2,483	2,157	1,990	2,038	1,950	1,907	1,791	1,748	1,881	1,883	1,846	1,858	1,817	1,825	1,738	1,753	1,757

SMigR: males	119.5	111.3	116.8	117.5	101.9	93.2	94.5	89.6	86.7	80.7	77.9	83.0	82.4	80.2	79.8	77.3	76.7	72.1	71.8	70.8		
SMigR: females	99.0	92.5	97.5	98.5	85.7	78.6	79.8	75.9	73.7	68.8	66.6	70.9	70.4	68.7	68.8	66.8	66.4	62.6	62.2	61.5		
Migrants input																						
Migration - Net Flows																						
UK	+451	+772	+504	+452	+1,103	+1,438	+1,341	+1,518	+1,605	+1,836	+1,921	+1,656	+1,653	+1,726	+1,701	+1,784	+1,768	+1,943	+1,912	+1,905		+28,988
Overseas	-53	+268	-0	-52	+599	+934	+837	+1,014	+1,101	+1,332	+1,417	+1,152	+1,149	+1,222	+1,197	+1,280	+1,264	+1,439	+1,408	+1,401		+18,908
Summary of population change																						
Natural change	+1,251	+1,319	+1,284	+1,220	+1,192	+1,188	+1,205	+1,208	+1,227	+1,256	+1,281	+1,306	${ }^{+1,309}$	+1,318	+1,315	+1,297	+1,286	+1,286	+1,293	+1,291		+25,335
Net migration	+398	+1,040	+504	+399	+1,702	+2,371	+2,179	+2,531	+2,706	+3,168	+3,339	+2,808	+2,802	+2,948	+2,899	+3,065	+3,032	+3,382	+3,320	+3,306		+47,897
Net change	+1,649	+2,358	+1,788	+1,620	+2,894	+3,560	+3,384	+3,739	+3,933	+4,424	+4,620	+4,114	+4,111	+4,266	+4,213	+4,362	+4,318	+4,668	+4,613	+4,597		+73,231
Summary of Population estimates/forecasts																						
Population at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0-4	19,583	20,018	20,193	20,348	20,398	20,470	20,479	20,442	20,445	20,523	20,682	20,890	21,089	21,300	21,518	21,722	21,913	22,089	22,296	22,512	22,744	
5-10	20,501	20,718	21,540	22,119	22,641	23,274	24,011	24,572	24,799	25,023	25,188	25,341	25,396	25,407	25,462	25,590	25,785	26,018	26,275	26,548	26,819	
11-15	18,376	18,132	17,628	17,434	17,370	17,381	17,415	17,936	18,596	19,142	19,802	20,488	21,010	21,240	21,501	21,662	21,787	21,816	21,817	21,838	21,931	
16-17	7,870	7,802	7,741	7,618	7,413	7,333	7,316	7,059	7,012	7,346	7,415	7,406	7,653	8,274	8,616	8,647	8,742	8,865	9,045	9,118	9,085	0
18-59Female, 64Male	181,928	181,670	182,117	182,091	182,196	183,223	184,651	185,821	187,128	188,227	189,866	191,624	192,871	193,811	195,058	196,627	198,145	199,859	201,887	203,951	206,030	๑
60/65-74	37,517	38,657	39,610	40,486	41,201	41,903	42,53	42,924	43,448	44,010	44,566	44,596	44,866	45,440	46,650	47,748	48,907	49,958	50,936	51,941	52,915	Q
75-84	18,651	18,815	19,124	19,453	19,687	19,933	20,375	21,192	21,986	22,774	23,596	24,990	26,118	26,983	27,672	28,254	28,783	28,992	29,245	29,460	29,658	(1)
85+	8.693	8,957	9,174	9,367	9,627	9,911	10,186	10.425	10.698	10,999	11,352	11,754	12,198	12,658	13,102	13,542	14.094	14.877	15.640	16,386	17,168	
Total	313,119	314,768	317,127	318,914	320,534	323,428	326,987	330,371	334,110	338,044	342,468	347,088	351,202	355,313	359,579	363,792	368,155	372,473	377,141	381,754	386,351	S^{231}
Population impact of constraint																						
Number of persons	$-2,907$	-790	-148	-684	-789	+514	+1,183	+991	+1,343	+1,518	+1,980	+2,151	+1,620	+1,614	+1,760	+1,711	+1,877	+1,844	+2,194	+2,132	+2,118	
Labour Force																						
Number of Labour Force	167,537	167,613	168,085	168,126	168,106	169,027	170,178	171,325	172,665	173,907	175,453	177,103	178,676	180,128	181,683	183,196	184,904	186,777	188,834	190,887	192,986	25,449
Change over previous year	-1,171	+75	+473	+40	-20	+921	+1,151	+1,147	+1,340	+1,242	+1,546	+1,649	+1,573	+1,452	+1,555	+1,513	+1,708	+1,873	+2,057	+2,053	+2,099	
Number of supply units	152,143	152,153	152,682	152,822	152,931	153,912	155,213	156,564	158,096	159,538	161,270	163,103	164,875	166,547	168,320	169,961	171,651	173,491	175,371	177,251	179,171	27,029
Change over previous year	-79	+10	+530	+139	+109	+980	${ }^{+1,301}$	+1,351	+1,532	${ }^{+1,442}$	+1,733	+1,833	+1,772	+1,672	+1,772	+1,641	+1,690	+1,840	+1,880	+1,880	+1,920	
Households																						
Number of Households	137,016	138,161	139,540	140,669	141,682	143,290	145,256	147,157	149,183	151,295	153,609	155,939	158,105	160,285	162,514	164,797	167,090	169,490	172,012	174,462	176,811	39,795
Change over previous year	+337	+1,146	+1,379	+1,129	+1,013	+1,608	+1,966	+1,900	+2,027	+2,111	+2,314	+2,330	+2,166	+2,180	+2,229	+2,283	+2,293	+2,400	+2,522	+2,450	+2,349	
Number of supply units	142,297	143,485	144,914	146,086	147,137	148,807	150,848	152,820	154,924	157,117	159,519	161,937	164,185	166,448	168,763	171,132	173,512	176,004	178,621	181,165	183,602	41,305
Change over previous year	+344	+1,187	+1,430	+1,172	+1,051	+1,669	+2,042	+1,972	+2,104	+2,192	+2,402	+2,418	+2,248	+2,263	+2,314	+2,370	+2,379	+2,492	+2,617	+2,544	+2,438	

Page 205

Components of Population Change						Gloucester														
Year beginning July 1st																				
Births																				
Male	890	898	884	865	851	849	851	849	849	853	860	866	869	872	876	880	884	892	904	918
Female	847	855	842	824	810	809	810	809	809	812	819	824	827	831	835	838	842	849	861	874
All Biths	1,737	1,754	1,726	1,689	1.661	1,658	1,661	1.658	1,658	1,665	1,678	1.690	1,696	1,703	1.711	1,719	1,726	1.741	1,766	1,792
TFR	2.28	2.32	2.29	2.26	2.23	2.21	2.19	2.17	2.15	2.14	2.13	2.12	2.11	2.10	2.09	2.08	2.07	2.07	2.07	2.07
Births input																				
Deaths																				
Male	488	481	488	495	484	487	490	494	498	500	505	509	516	521	528	534	543	549	556	566
Female	510	501	496	495	493	488	486	487	486	485	487	491	493	495	498	505	511	517	525	533
All deaths	998	981	984	990	977	974	976	980	983	985	992	1,000	1,009	1,016	1,027	1,039	1,053	1,066	1,080	1,099
SMR: males	101.1	97.3	96.2	95.5	91.4	89.4	87.7	85.9	84.4	82.4	80.8	79.2	78.0	76.5	75.4	74.1	73.1	71.9	70.7	70.1
SMR: females	103.3	99.9	97.8	96.5	94.4	92.0	90.2	88.5	86.5	84.7	83.1	81.6	80.0	78.3	76.9	75.8	74.6	73.4	${ }^{72.4}$	71.4
SMR: male \& female	102.2	98.6	97.0	96.0	92.9	90.7	88.9	87.2	85.4	83.5	81.9	80.4	79.0	77.4	76.1	74.9	73.8	72.6	71.5	70.7
Expectation of life	80.7	81.0	81.1	81.2	81.4	81.6	81.8	81.9	82.0	82.2	82.3	82.4	82.5	82.7	82.8	82.9	83.0	83.1	83.2	83.3
Deaths input																				
In-migration from the UK																				
Male	2.566	2.594	2,564	2.592	2,662	2,693	2,675	2,693	2,700	2,730	2,735	2.711	2,719	2,726	2,713	2,704	2,699	2,733	2,732	2,722
Female	2,677	2,712	2,686	2,720	2,789	2,817	2,806	2,830	2,835	2,863	2,866	2,837	2,849	2,858	2,843	2,834	2,828	2,865	2,865	2,865
All	5,243	5,306	5,250	5,312	5,451	5,510	5,481	5,523	5,536	5,593	5,601	5,548	5,568	5,584	5,556	5,538	5,526	5,598	5,596	5,587
SMigR: males	40.2	40.8	40.4	41.0	42.3	42.6	42.1	42.2	42.1	42.3	42.0	41.2	41.0	40.6	40.0	39.4	38.9	39.0	${ }^{38.4}$	37.8
SMigR: females	41.9	42.7	42.4	43.2	44.3	44.6	44.1	44.3	44.1	44.3	43.9	42.9	42.8	42.5	41.7	41.1	40.5	40.5	39.9	39.3
Migrants input		*	*	*			*	*			*	*	*			*	*			
Out-migration to the UK																				
Male	2,712	2,675	2,701	2,671	2,603	2,576	2,587	2,563	2,554	2,526	2,521	2,547	2,536	2,528	2,541	2,551	2,557	2,521	2,523	2,523
Female	2,791	2,764	2,794	2,762	2,691	2,660	2,677	2,659	2,655	2,626	2,622	2,650	2,640	2,633	2,648	2,656	2,662	2,627	2,626	2,635
All	5.502	5.439	5,495	5,433	5,294	5,235	5,264	5,222	5,209	5,152	5,144	5,197	5,177	5,161	5,189	5,207	5,219	5,147	5,149	5,158
SMigR: males	42.4	42.1	42.6	42.3	41.3	40.8	40.7	40.1	39.8	39.1	38.7	38.7	38.2	37.7	37.4	37.1	36.8	35.9	35.5	35.0
SMigR: females	43.6	43.5	44.1	43.8	42.8	42.1	42.1	41.6	41.3	40.6	40.1	40.1	39.6	39.2	38.9	38.5	38.1	37.1	36.5	36.1
Migrants input			*	*			*	*	*	*	*	*	*	*	*	*	*	*		
In-migration from Overseas																				
Male	326	360	329	362	437	468	453	475	482	513	517	489	500	508	493	483	477	515	514	509
Female	279	308	283	312	376	404	390	409	415	442	446	421	431	438	425	417	412	445	444	440
All	605	668	612	674	813	872	843	885	898	955	963	910	930	946	918	900	888	960	958	949
SMigR: males	${ }^{73.2}$	81.4	74.8	83.0	100.5	107.4	103.3	108.0	109.0	115.4	115.4	108.1	109.8	110.8	106.5	103.3	100.9	107.9	106.2	103.6
SMigR: females	63.8	70.9	65.2	72.4	87.8	93.9	90.3	94.4	95.2	100.6	100.7	94.1	95.7	96.5	92.9	90.2	88.2	94.4	92.9	90.6
Migrants input	.	*	*	*			*	*	*	*	*	*	*	*		*	-	*		*
Out-migration to Overseas																				
Male	542	506	537	502	425	393	409	386	378	347	342	371	359	351	366	375	382	342	343	348
Female	439	411	436	409	346	320	333	315	309	283	280	304	295	288	301	310	315	283	284	288
All	980	917	973	911	772	713	742	700	687	630	622	675	655	639	667	685	697	625	627	636
SMigR: males	121.7	114.6	121.9	115.0	97.9	90.1	93.2	87.6	85.5	78.0	76.2	82.0	79.0	76.5	78.9	80.3	80.8	71.7	70.8	70.8
SMigR: females	100.3	94.4	100.6	94.9	80.8	74.5	77.1	72.5	70.8	64.5	63.2	68.0	65.6	63.6	65.8	67.0	67.5	60.1	59.4	59.4
Migrants input	*	.	*			.	*	*	*	*	*	*	*	*	.	.	-	*	*	

Components of Population Change						Tewkesbury														
Year beginning July 1st																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	475	480	484	480	478	474	475	477	481	486	491	497	502	505	511	515	520	527	534	540
Female	452	457	461	457	455	452	452	454	458	463	468	474	478	481	486	491	495	502	508	514
All Births	927	937	945	937	934	926	927	932	940	949	959	971	980	986	997	1,006	1,015	1,029	1,042	1,053
TFR	2.07	2.07	2.06	2.03	2.02	1.99	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.89	1.88	1.87	1.87	1.87	1.87
Births input																				
Deaths																				
Male	383	387	394	396	397	403	408	415	422	429	436	445	455	464	473	484	496	507	518	527
Female	402	402	408	416	414	416	419	423	426	430	435	440	446	452	459	467	476	485	494	505
All deaths	785	789	801	812	811	818	827	838	848	858	871	885	901	916	932	951	972	992	1,012	1,032
SMR: males	91.0	89.0	87.6	85.3	82.7	81.2	79.6	78.2	76.7	75.1	73.7	72.5	71.4	70.4	69.2	68.4	67.7	66.9	66.2	65.3
SMR: females	88.9	86.1	84.7	83.9	81.3	79.6	78.0	76.4	75.0	73.3	71.9	70.3	69.2	67.8	66.6	65.4	64.3	63.1	62.1	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	82.0	80.4	78.8	77.3	75.8	74.2	72.8	71.4	70.3	69.1	67.9	66.9	66.0	65.0	64.1	63.3
Expectation of life	81.7	81.9	82.0	82.2	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.3	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.1
Deaths input																				
In-migration from the UK																				
Male	2,381	2,409	2,387	2,375	2,408	2,428	2,456	2,462	2,483	2,509	2,527	2,514	2,499	2,514	2,534	2,547	2,553	2,552	2,548	2,562
Female	2,656	2,671	2,633	2,603	2,623	2,629	2,643	2,630	2,639	2,645	2,647	2,625	2,606	2,606	2,622	2,626	2,627	2,624	2,609	2,626
All	5,037	5,080	5,020	4,978	5,031	5,057	5,099	5,092	5,122	5,153	5,174	5,139	5,105	5,120	5,156	5,173	5,180	5,176	5,157	5,188
SMigR: males	60.0	59.9	58.4	57.4	57.7	57.5	57.4	56.6	56.2	55.9	55.4	54.1	52.9	52.6	52.3	51.7	50.9	50.1	49.2	48.8
SMigR: females	66.4	66.2	64.6	63.5	63.9	63.6	63.5	62.6	62.2	61.7	61.0	59.6	58.5	57.9	57.6	56.7	55.7	54.7	53.5	53.1
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Out-migration to the UK																				
Male	2,058	2,045	2,079	2,104	2,085	2,078	2,064	2,074	2,065	2,056	2,052	2,074	2,093	2,091	2,076	2,072	2,070	2,070	2,083	2,067
Female	2,342	2,312	2,339	2,355	2,321	2,302	2,273	2,271	2,250	2,228	2,211	2,224	2,239	2,226	2,205	2,192	2,187	2,191	2,197	2,182
All	4,400	4,357	4,417	4,459	4,406	4,380	4,338	4,345	4,315	4,284	4,263	4,298	4,332	4,317	4,281	4,264	4,257	4,261	4,280	4,249
SMigR: males	51.9	50.9	50.8	50.9	50.0	49.2	48.2	47.7	46.8	45.8	45.0	44.6	44.3	43.7	42.8	42.1	41.3	40.6	40.2	39.4
SMigR: females	58.6	57.3	57.4	57.4	56.5	55.7	54.6	54.0	53.0	52.0	50.9	50.5	50.3	49.5	48.4	47.3	46.4	45.7	45.1	44.1
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
In-migration from Overseas																				
Male	211	235	204	182	211	226	250	247	265	283	296	277	259	268	289	299	303	301	290	308
Female	185	204	175	155	179	190	209	204	216	229	237	221	206	211	226	233	236	234	225	239
All	396	439	379	337	390	416	458	451	481	512	533	498	464	479	515	532	539	535	516	547
SMigR: males	79.0	86.6	73.6	64.8	74.4	78.6	85.7	83.2	87.9	92.6	95.1	87.5	80.5	82.4	87.9	89.8	89.6	87.7	83.3	87.2
SMigR: females	70.4	77.1	65.3	57.5	66.1	69.9	76.2	73.8	77.7	81.4	83.5	76.9	70.9	72.4	76.9	78.3	78.1	76.3	72.4	75.8
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Out-migration to Overseas																				
Male	88	65	98	122	93	79	55	59	43	25	13	33	52	44	24	14	10	13	24	
Female	73	53	80	98	74	62	44	47	33	20	10	26	40	34	18	11	8	9	18	4
All	161	118	178	220	167	141	99	106	76	45	24	59	93	78	42	25	18	22	41	10
SMigR: males	33.1	23.8	35.6	43.4	32.8	27.3	18.8	20.0	14.1	8.2	4.3	10.5	16.3	13.6	7.3	4.2	3.1	3.7	6.8	1.6
SMigR: females	27.7	20.0	29.8	36.4	27.5	23.0	15.9	16.9	12.0	7.0	3.6	8.9	13.8	11.5	6.2	3.5	2.6	3.1	5.7	1.3
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Page 209

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
Compatible\Model RunsICGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_EMPLOYMENT LED 2 LOW UNEMP.xls Tick to save as new flat file

It was run on 23/05/2012 at 13:03:09	Produce flat file Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		<< Append to (blank if not to be appended) << Save flat file with this name (may be blank if to be appended to an existing file)
		G:IHEaDROOM11. POPGROUP v3.1 DF Compatible\Model Runs\CGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_EMPLOYMENT LED 2 LOW UNEMP.xls	

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 210

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the JOBS Cons2011-35.xls workbook, which was last updated on 08/05/2012
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Page 211

/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Population Estimates and Forecasts																				
Components of Population Change						Chet, Glouc, Tewkes														
Year beginning July 1st .																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	2,009	2,128	2,102	2,095	2,096	2,091	2,093	2,092	2,095	2,102	2,103	2,104	2,099	2,102	2,102	2,100	2,100	2,102	2,106	2,109
Female	1,913	2,027	2,002	1,996	1,996	1,991	1,993	1,992	1,995	2,002	2,003	2,004	1,999	2,002	2,001	2,000	2,000	2,002	2,005	2,009
All Births	3,923	4,156	4,105	4,091	4,091	4,083	4,085	4,084	4,091	4,103	4,106	4,107	4,099	4,105	4,103	4,100	4,100	4,104	4,111	4,118
TFR	2.10	2.12	2.10	2.07	2.05	2.03	2.01	1.99	1.98	1.97	1.96	1.95	1.95	1.94	1.93	1.92	1.92	1.92	1.92	1.92
Births input																				
Deaths																				
Male	1,333	1,333	1,350	1,366	1,363	1,371	1,379	1,392	1,406	1,417	1,433	1,447	1,467	1,486	1,508	1,531	1,557	1,582	1,605	1,631
Female	1,450	1,454	1,448	1,450	1,447	1,440	1,437	1,435	1,435	1,436	1,441	1,449	1,457	1,466	1,478	1,496	1,515	1,534	1,555	1,580
All deaths	2,783	2,786	2,798	2,816	2,810	2,811	2,816	2,827	2,841	2,853	2,873	2,896	2,924	2,952	2,986	3,027	3,072	3,116	3,160	3,212
SMR: males	93.3	89.9	88.6	87.1	84.6	82.7	80.9	79.4	77.9	76.2	74.8	73.4	72.2	71.0	69.9	68.9	68.0	67.1	66.2	65.5
SMR: females	93.6	91.0	89.2	87.4	85.6	83.6	81.8	80.2	78.5	76.8	75.2	73.8	72.4	71.0	69.7	68.5	67.4	66.3	65.3	64.5
SMR: male \& female	93.5	90.5	88.9	87.3	85.1	83.2	81.4	79.8	78.2	76.5	75.0	73.6	72.3	71.0	69.8	68.7	67.7	66.7	65.8	65.0
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	9,979	8,115	8,588	8,563	8,486	8,522	8,488	8,486	8,540	8,507	8,535	8,483	8,577	8,590	8,622	8,581	8,487	8,509	8,473	8,421
Female	10,785	8,836	9,341	9,330	9,238	9,300	9,278	9,255	9,285	9,242	9,260	9,201	9,319	9,322	9,354	9,301	9,205	9,248	9,223	9,187
All	20,764	16,951	17,929	17,893	17,725	17,822	17,766	17,741	17,826	17,749	17,795	17,684	17,896	17,912	17,975	17,882	17,693	17,757	17,696	17,608
SMigR: males	61.4	48.2	51.0	50.4	49.7	49.6	49.1	48.9	49.1	48.8	48.8	48.3	48.7	48.5	48.4	47.8	46.9	46.8	46.3	45.7
SMigR: females	66.2	52.0	55.0	54.4	53.5	53.6	53.3	53.0	53.0	52.7	52.7	52.2	52.7	52.5	52.3	51.4	50.3	50.1	49.5	48.9
Migrats input																				
Out-migration to the UK																				
Male	6,573	8,353	7,885	7,889	7,961	7,911	7,932	7,943	7,912	7,953	7,935	8,000	7,896	7,895	7,868	7,916	8,007	7,960	7,984	8,013
Female	7,073	9,106	8,596	8,628	8,724	8,677	8,712	8,726	8,672	8,708	8,680	8,726	8,618	8,603	8,566	8,613	8,710	8,693	8,730	8,789
All	13,646	17,459	16,481	16,517	16,685	16,588	16,644	16,669	16,584	16,661	16,615	16,726	16,514	16,498	16,435	16,528	16,717	16,653	16,714	16,802
SMigR: males	40.4	49.6	46.8	46.5	46.6	46.0	45.9	45.8	45.5	45.6	45.4	45.6	44.8	44.6	44.2	44.1	44.3	43.8	43.6	43.5
SMigR: females	43.4	53.6	50.6	50.3	50.5	50.0	50.0	50.0	49.5	49.6	49.4	49.5	48.8	48.4	47.9	47.6	47.6	47.1	46.9	46.8
Migrants input																				
In-migration from Overseas																				
Male	1,404	1,399	1,398	1,396	1,395	1,393	1,391	1,390	1,390	1,390	1,389	1,389	1,387	1,385	1,383	1,382	1,381	1,381	1,379	1,377
Female	1,224	1,229	1,230	1,232	1,233	1,235	1,237	1,238	1,238	1,238	1,239	1,239	1,241	1,243	1,245	1,246	1,247	1,247	1,249	1,251
All	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628	2,628
SMigR: males	124.4	119.3	119.3	118.2	117.3	116.7	116.0	115.6	115.5	115.3	115.3	115.3	115.1	114.8	114.2	113.6	112.9	112.4	111.6	110.7
SMigR: females	112.9	108.1	108.2	107.2	106.3	105.9	105.5	105.3	105.1	104.9	105.0	105.0	105.3	105.4	105.2	104.8	104.3	103.9	103.2	102.6
Migrants input																				
Out-migration to Overseas																				
Male	1,273	1,266	1,263	1,260	1,257	1,255	1,254	1,252	1,251	1,250	1,249	1,249	1,248	1,247	1,246	1,244	1,243	1,241	1,240	1,239
Female	1,013	1,020	1,023	1,026	1,029	1,031	1,032	1,034	1,035	1,036	1,037	1,037	1,038	1,039	1,040	1,042	1,043	1,045	1,046	1,047
All	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286

Components of Population Change						Cheltenham														
Year beginning July 1 st																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male	693	${ }_{7} 7$	736	740	745	747	753	758	768	777	784	791	795	805	807	807	809	809	808	807
Female	660	702	700	705	709	712	717	722	732	740	747	753	757	766	769	769	770	770	769	769
All Biths	1,352	1,440	1,436	1,445	1,454	1,459	1,470	1,480	1,500	1,517	1,531	1,544	1,553	1,571	1,576	1,576	1,579	1,579	1,577	1,576
TFR	1.98	2.00	1.99	1.97	1.95	1.93	1.91	1.89	1.88	1.87	1.86	1.85	1.84	1.84	1.83	1.82	1.82	1.82	1.82	1.82
Births input																				
Deaths																				
Male	469	462	468	472	477	478	477	480	484	488	493	496	502	507	515	522	530	539	547	556
Female	547	548	544	537	538	533	528	524	522	521	520	522	523	526	529	533	538	544	549	${ }_{557}$
All deaths	1,016	1,010	1,012	1,009	1,015	1,011	1,005	1,004	1,007	1,009	1,013	1,018	1,025	1,033	1,044	1,055	1,068	1,082	1,096	1,113
SMR: males	88.1	83.9	82.6	81.1	79.9	77.9	75.9	74.5	73.2	71.6	70.5	68.9	67.8	66.6	65.7	64.7	63.8	63.1	${ }^{62.3}$	61.7
SMR: females	89.4	87.7	85.8	83.0	82.0	80.2	78.3	76.5	75.0	${ }^{73.3}$	71.7	70.4	69.0	67.8	66.5	65.3	64.2	63.3	62.3	61.5
SMR: male \& female	88.8	85.9	84.3	82.1	81.0	79.1	77.1	75.5	74.1	${ }^{72.5}$	71.1	69.7	68.4	67.2	66.1	65.0	64.0	63.2	62.3	61.6
Expectation of life	81.9	82.2	82.3	82.5	82.6	82.8	83.0	83.1	83.2	83.3	83.4	83.6	83.7	83.8	83.9	84.0	84.1	84.2	84.2	84.3
Deaths input																				
In-migration from the UK																				
Male	4,061	3,377	3,538	3,478	3,436	3,448	3,411	3,443	3,444	3,427	3,442	3,433	3,475	3,452	3,452	3,420	3,385	3,390	3,376	3,339
Female	4,440	3,732	3,922	3,884	3,849	3,906	3,888	3,918	3,910	3,909	3,932	3,931	3,998	3,978	3,981	3,947	3,917	3,941	3,947	3,915
All	8.501	7,109	7,460	7,362	7,285	7,353	7,299	7,361	7,354	7,336	7,374	7,364	7,472	7,430	7,433	7,366	7,302	7,331	7,324	7,253
SMigR: males	66.3	53.1	55.5	54.0	53.0	53.0	52.2	52.6	52.5	52.1	52.2	51.9	52.4	51.8	51.5	50.7	49.9	49.8	49.3	48.4
SMigR: females	71.9	57.3	59.7	58.1	57.0	57.6	57.1	57.3	57.0	56.9	57.1	57.0	57.8	57.1	56.6	55.4	54.4	54.2	53.7	52.8
Migrants input			*	*	*	*	*	*	*	*										
Out-migration to the UK																				
Male	2,739	3,367	3,194	3,226	3,251	3,208	3,224	3,191	3,200	3,206	3,184	3,195	3,138	3,161	3,162	3,192	3,222	3,196	3,189	3,215
Female	2,989	3,752	3,573	3,640	3,693	3,667	3,705	3,676	3,674	3,686	3,671	3,669	3,617	3,637	3,633	3,670	3,704	3,701	3,715	3,760
All	5.727	7,119	6,768	6,866	6,943	6,875	6,929	6,867	6,874	6,892	6,854	6,864	6,756	6,798	6,795	6,862	6,926	6,897	6,904	6,975
SMigR: males	44.7	52.9	50.1	50.0	50.1	49.3	49.3	48.7	48.7	48.7	48.3	48.3	47.3	47.4	47.2	47.3	47.5	46.9	46.6	46.7
SMigR: females	48.4	57.6	54.4	54.5	54.7	54.1	54.4	53.8	53.5	53.6	53.3	53.2	52.3	52.2	51.7	51.5	51.5	50.9	50.6	50.7
Migrants input	-	*	*	*	*	*	*	.	.	*	*	*	*	.	.	*	.	*		
In-migration from Overseas																				
Male	766	761	759	757	756	753	751	749	748	747	746	746	744	741	738	${ }^{737}$	736	735	734	732
Female	677	682	684	686	687	690	692	694	695	696	697	697	699	702	705	706	707	708	709	711
All	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443
SMigR: males	176.7	168.2	167.5	165.4	164.3	163.5	162.6	162.3	162.0	162.0	162.2	162.3	162.0	161.2	160.4	159.6	159.1	158.6	157.5	156.4
SMigR: females	167.0	158.1	156.9	154.1	152.1	151.1	150.3	150.0	149.3	149.0	149.3	149.1	149.6	149.8	149.8	149.3	148.7	148.3	147.5	146.5
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
Out-migration to Overseas																				
Male	743	738	734	730	728	725	724	722	720	719	718	718	717	716	714	712	711	710	709	708
Female	586	591	595	599	601	604	605	607	609	610	611	611	612	613	615	617	618	619	620	621
All	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329
SMigR: males	171.5	163.1	162.1	159.6	158.2	157.5	156.8	156.4	156.1	156.0	156.2	156.2	156.2	155.8	155.1	154.3	153.7	153.0	152.2	151.2
SMigR: females	144.5	137.1	136.4	134.4	133.0	132.2	131.3	131.2	130.7	130.6	130.8	130.6	130.9	130.8	130.7	130.4	130.0	129.8	129.0	128.0
Migrants input	.	*	.						-	.	-	.	-	-	.	.	*	.	-	*

Migration - Net Flows																							
UK	+1,393	-1,001	-223	+9	+39	+152	+132	+181	+259	+187	+167	-4	+134	+223	+285	+192	+69	+143	+104	+18		+2,458	
Overseas	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157	+157		+3,140	
Summary of population change																							
Natural change	+684	+779	+735	+707	+706	+705	+700	+692	+682	+682	+675	+664	+648	+636	+622	+612	+600	+595	+594	+588		+13,307	
Net migration	+1,550	-844	-66	+166	+196	+309	+289	+338	+416	+344	+324	+153	+291	+380	+442	+349	+226	+300	+261	+175		+5,598	
Net change	+2,234	-64	+669	+873	+903	$+1,013$	+990	+1,030	+1,098	$+1,026$	+999	+817	+939	+1,016	+1,064	+960	+826	+895	+855	+764		+18,905	
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	8,206	8,484	8,454	8,488	8,497	8,509	8,520	8,464	8,433	8,415	8,404	8,393	8,367	8,351	8,343	8,335	8,322	8,304	8,307	8,323	8,348		
5-10	8,218	8,478	8,871	9,131	9,416	9,653	9,905	10,136	10,167	10,219	10,230	10,250	10,251	10,192	10,158	10,143	10,135	10,119	10,105	10,089	10,069		
11-15	7,011	6,954	6,719	6,706	${ }_{6}^{6,676}$	6,767	6,876	7.128	7.426	7,685	7,935	8,177	8,335	8,387	8,449	8,473	8,495	8,504	8,451	8.417	8,390		
16-17	2,802	2,844	2,873	2,831	2,817	2,768	2,663	2.581	2,652	2,797	2.839	2.864	2,932	3,190	3,339	3,336	3,346	3,332	3,403	3,442	3,398		
18-59Female, 64Male	68,040	69,258	68,707	68,755	69,032	69,316	69,661	69,842	69,970	70,046	70,242	70,400	70,386	70,349	70,426	70,652	70,799	70,976	71,136	71,242	71,449		
60/65-74	12,565	12,914	13,128	13,412	13,642	13,854	14,040	14,204	14,456	14,753	15,027	15,098	15,300	15,653	16,106	16,659	17,183	17,626	18,067	18,510	18,835		
75-84	6,185	6,251	6,291	${ }_{6}^{6,313}$	${ }^{6,356}$	${ }_{6}^{6,377}$	${ }^{6.521}$	${ }^{6,744}$	6,926	7,132	7,298	7,681	7.981	8,263	${ }^{8,464}$	${ }^{8,642}$	8.754	${ }^{8,775}$	${ }^{8.859}$	8.965	${ }^{9,086}$		
$85+$	2.580	2.658	2,735	2.810	2,883	2,979	3,049	3,126	3,224	3,304	3,403	3,515	3,643	3.748	3.864	3,972	4.140	4.362	4.566	4.762	4.937		
Total	115,608	117,842	117,777	118,446	119,319	120,222	121,235	122,225	123,255	124,352	125,379	126,377	127,194	128,133	129,149	130,213	131,173	131,999	132,894	133,749	134,513	18,905	
Population impact of constraint																							0
Number of persons	-3,805	+1,120	-1,274	-496	-264	-234	-121	-141	-92	-14	-86	-106	-277	-139	-50	+12	-81	-204	-130	-169	-255		010
Labour Force																							(1)
Number of Labour Force	62,036	63,226	62,767	62,819	62,971	63,182	63,393	63,653	63,903	64,102	64,242	64,381	64,540	64,708	64,926	65,192	65,429	65,676	65,913	66,140	66,357	4,321	
Change over previous year	-2,005	+1,190	-458	+52	+152	+211	+211	+260	+250	+200	+140	+139	+159	+168	+217	+267	+237	+247	+237	+227	+217		N
Number of supply units	62,036	63,226	62,835	62,954	63,174	63,454	63,734	64,064	64,384	64,654	64,864	65,074	65,303	65,543	65,763	66,033	66,273	66,523	66,763	66,993	67,213	5,178	
Change over previous year	$-1,385$	+1,190	-391	$+120$	+220	+280	+280	+330	${ }^{+320}$	+270	+210	+210	+230	+240	+220	+270	+240	+250	+240	+230	+220		\checkmark
Households																							
Number of Households	49,970	50,984	51,144	51,537	51,995	52,524	53,090	53,651	54,229	54,800	55,373	55,918	56,411	56,980	57,558	58,164	58.722	59,306	59,892	60,450	60,941	10,972	
Change over previous year	-745	+1,015	+160	+393	+458	+529	+567	+561	+578	+571	+572	+546	+493	+569	+578	+606	+558	+584	+586	+558	+491		
Number of supply units	51,782	52,834	52,999	53,406	53,880	54,429	55,016	55,597	56,196	56,788	57,381	57,946	58,457	59,047	59,645	60,274	60,852	61,457	62,064	62,642	63,152	11,370	
Change over previous year	-772	+1,052	+166	+407	+474	+548	+587	+581	+599	+592	+593	+565	+511	+589	+598	+628	+578	+605	+607	+578	+509		

Components of Population Change						Tewkesbury														
Year beginning July 1st ...																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	459	490	488	487	489	484	481	478	474	471	466	462	457	454	452	449	447	445	444	442
Female	437	467	465	464	466	461	458	455	452	448	444	440	436	432	431	428	425	424	422	420
All Biths	896	956	953	951	955	945	939	${ }_{93}$	926	919	910	902	893	886	883	877	872	869	866	862
TFR	2.07	2.07	2.06	2.03	2.02	1.99	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.89	1.88	1.87	1.87	1.87	1.87
Births input																				
Deaths																				
Male	379	390	396	399	400	406	411	417	423	428	434	442	450	459	466	476	486	496	505	513
Female	398	406	411	420	419	420	423	426	429	431	435	438	443	448	454	462	469	477	485	494
All deaths	778	796	806	819	819	826	835	844	852	859	869	880	893	907	920	937	956	972	990	1,007
SMR: males	91.0	89.0	87.6	85.4	82.8	81.3	79.6	78.2	76.7	75.1	73.7	72.5	71.4	70.4	69.2	68.4	67.7	66.9	66.2	65.3
SMR: females	88.9	86.1	84.7	83.9	81.3	79.6	78.0	76.4	75.0	${ }^{73.3}$	71.9	70.3	69.2	67.8	66.6	65.4	64.3	63.1	62.1	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	82.0	80.4	78.8	77.3	75.8	74.2	72.8	71.4	70.3	69.1	67.9	66.9	66.0	65.0	64.1	63.3
Expectation of life	81.7	81.9	82.0	82.2	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.3	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.0
Deaths input																				
In-migration from the UK																				
Male	2,935	2,351	2,471	2,451	2,407	2,400	2,412	2,368	2,401	2,400	2,418	2,415	2,434	2,448	2,466	2,480	2,451	2,451	2,439	2,451
Female	3,259	2,619	2,737	2,703	2,641	2,620	2,616	2,549	2,569	2,547	2,547	2.535	2,550	2,549	2,562	2,567	2,533	2,531	2,509	2,522
All	6,195	4,970	5,208	5,154	5,048	5,020	5,028	4,917	4,970	4,947	4,965	4,950	4,985	4,998	5,028	5,047	4,984	4,982	4,948	4,973
SMigR: males	75.6	57.7	60.2	58.9	57.1	56.4	56.2	54.7	55.2	55.0	55.2	54.9	55.2	55.2	55.3	55.2	54.2	53.9	53.3	53.3
SMigR: females	83.6	63.9	66.6	65.0	63.1	62.4	62.1	60.4	61.1	60.6	60.6	60.3	60.7	60.6	60.6	60.2	58.9	58.5	57.6	57.6
Migrants input			*	*			*	*		*	*	*	*				*			
Out-migration to the UK																				
Male	1,521	2,091	1,986	2,014	2,069	2,087	2,090	2,149	2,131	2,149	2,148	2,161	2,147	2,146	2,134	2,129	2,160	2,159	2,178	2,166
Female	1,721	2,376	2,244	2,269	2,320	2,330	2,319	2,371	2,336	2,341	2,324	2,326	2,305	2,293	2,275	2,261	2,293	2,296	2,311	2,298
All	3,242	4,467	4,229	4,283	4,389	4,417	4,409	4,520	4,467	4,490	4,472	4,487	4,452	4,439	4,409	4,390	4,453	4,455	4.489	4,464
SMigR: males	39.2	51.4	48.4	48.4	49.0	49.0	48.7	49.6	49.0	49.2	49.1	49.2	48.7	48.4	47.9	47.4	47.7	47.4	47.6	47.1
SMigR: females	44.1	57.9	54.6	54.6	55.4	55.5	55.1	56.2	55.5	55.7	55.3	55.4	54.9	54.5	53.8	53.0	53.3	53.0	53.0	52.5
Migrants input		*	*	*	*	*	*	*	*	*	*	*	*		*	*	*			
In-migration from Overseas																				
Male	168	168	168	169	169	170	170	171	172	173	174	174	174	175	175	176	176	176	177	177
Female	146	146	146	145	145	144	144	143	142	141	140	140	140	139	139	138	138	138	137	137
All	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314
SMigR: males	64.3	60.9	60.7	59.7	59.0	58.6	58.3	58.1	58.3	58.5	58.6	58.7	58.7	58.8	58.9	58.7	58.5	58.3	58.1	57.9
SMigR: females	57.3	54.3	53.9	53.1	52.5	52.1	51.9	51.6	51.6	51.5	51.5	51.7	51.8	51.8	51.6	51.4	51.1	50.9	50.7	50.5
Migrants input			*	*			*	*			-	*			*	*				
Out-migration to Overseas																				
Male	134	133	134	134	134	135	135	135	136	136	137	137	138	138	138	138	139	139	139	139
Female	109	110	109	109	109	108	108	108	107	107	106	106	105	105	105	105	104	104	104	104
All	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243
SMigR: males	51.3	48.5	48.2	47.5	46.9	46.5	46.2	46.0	46.1	46.1	46.2	46.3	46.3	46.4	46.3	46.2	46.0	45.9	45.7	45.6
SMigR: females	42.8	40.6	40.4	39.8	39.3	39.1	39.0	38.9	38.9	38.9	38.9	39.0	39.1	39.1	39.1	38.9	38.7	38.6	38.4	38.3
Migrants input		*	*	*	*	-	*	*	*	*	*	*	*	*	*	*	*	*		*

Migration - Net Flows																							
UK	+2,953	+502	+978	+871	+659	+603	+619	+397	+503	+457	+493	+463	+532	+558	+618	+657	+530	+527	+459	+509		+13,889	
Overseas	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71		+1,420	
Summary of population change																							
Natural change	+118	+161	+147	+132	+136	+118	+104	+89	+74	+60	+41	+22	-0	-21	-37	-60	-84	-104	-124	-145		+628	
Net migration	+3,024	+573	+1,049	+942	+730	+674	+690	+468	+574	+528	+564	+534	+603	+629	+689	+728	+601	+598	+530	+580		+15,309	
Net change	+3,142	+734	+1,196	+1,074	+866	+793	+794	+558	+648	+588	+604	+555	+603	+608	+652	+668	+518	+494	+406	+436		+15,936	
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	4,585	4,867	4,901	4,958	5,024	5,063	5,067	5,037	4,988	4,951	4,904	4,865	4,823	4,785	4,747	4,715	4,688	4,654	4,624	4,595	4,570		
5-10	5,393	5,528	5,654	5,886	5,959	6,093	6,218	6,352	6,381	6,397	6,433	6,448	6,432	6,383	6,335	6,293	6,245	6,196	6,145	6,090	6,040		
11-15	4,598	4,731	4,716	4,632	4,654	4,643	4,628	4,674	4.868	4,948	5,062	5,163	5,261	5,306	5,336	5,383	5,421	5,418	5,376	5,328	5,286		
16-17	1,731	1,772	1,735	1,750	1,788	1,764	1,754	1,743	1,636	1,693	1,751	1,721	1,764	1,865	1,955	1,946	1,936	1,963	2,009	2,029	2,015		
18-59Female, 64Male	45,621	47,222	47,138	47,524	47,834	48,010	48,213	48,340	48,325	48,332	48,198	48,187	48,169	48,120	48,161	48,283	48,328	48,319	48,380	48,455	48,494		
60/65-74	12,039	12,635	13,077	13,378	13,705	14,002	14,203	14,295	14,334	14,355	14,410	14,257	14,151	14,258	14,373	14,548	14,850	15,051	15,282	15,451	15,672		
75-84	5.448	5,652	5,839	6,034	6,184	6,341	6,520	6,891	7,259	7,660	8,051	${ }^{8,645}$	9,062	9,373	9,645	9,868	10,047	10,147	10,114	10,067	10,056		
$85+$	2.400	2.549	2.630	2,723	2.812	2.910	3.015	3,081	3,179	3,284	3.397	3,527	3,705	3,879	4.027	4.194	4.382	4.667	4.979	5,299	5.616		
Total	81,814	84,956	85,990	86,886	87,960	88,826	89,619	90,413	90,971	91,619	92,207	92,812	93,367	93,969	94,578	95,229	95,897	96,415	96,909	97,315	97,751	15,936	
Population impact of constraint																							0
Number of persons	-1,002	+2,480	+29	+505	+398	+186	+130	+146	-76	+30	-16	+20	-10	+59	+85	+145	+184	+57	+54	-14	+36		ט0
Labour Force																							Q
																							(1)
Number of Labour Force Change over previous year	41,800 -527	43,369 $+1,569$	43,447 +78	43,833 +386	44,144 +311	44,344 +200	44,469 +126	44,582 +113	44,646 +64	44,685 +39	44,675 -10	44,665 -10	44,691 +27	$\underset{+85}{44,77}$	44,875 +98	$\begin{array}{r}44,997 \\ +122 \\ \hline\end{array}$	45,107 +110	45,217 +110	45,339 +122	45,449 +110	45,546 +98	3,747	N
Number of supply units	33,833	35,103	35,203	35,553	35,843	36,043	36,183	36,314	36,404	36,474	36,504	36,534	36,594	36,664	36,744	36,844	36,934	37,024	37,124	37,214	37,294	3,461	$\xrightarrow{1}$
Change over previous year	-391	+1,270	+100	+350	+290	+200	+140	+130	+90	+70	+30	+30	+60	+70	+80	+100	+90	+90	+100	+90	+80		0
Households																							
Number of Households	35,654	36,991	37,395	37,955	38,461	38,955	39,466	39,988	40,385	40,797	41,204	41,579	41,953	42,346	42,726	43,169	43,632	44,001	44,401	44,733	45,075	9.421	
Change over previous year	+48	+1,337	+403	+560	+506	+494	+510	+522	+397	+412	+407	+375	+374	+393	+380	+442	+463	+368	+400	+332	+343		
Number of supply units	36,663	38,037	38,452	39,028	39,549	40,057	40,582	41,119	41,527	41,951	42,369	42,754	43,139	43,544	43,935	44,389	44,866	45,245	45,657	45,997	46,350	9.687	
Change over previous year	+50	+1,375	+415	+576	+521	+508	+525	+537	+408	+424	+418	+385	+385	+404	+391	+455	+477	+379	+412	+341	+353		

Page 220

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
Compatible\Model Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_EXPERIAN EMPLOYMENT LED.xIs
Tick to save as new flat file

It was run on 05/09/2012 at 15:57:39	Produce flat file Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		<< Append to (blank if not to be appended) << Save flat file with this name (may be blank if to be appended to an existing file)
		G:IHEaDROOM11. POPGROUP v3.1 DF CompatiblelModel Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_EXPERIAN EMPLOYMENT LED.xIs	

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig INUKONS2010.xls workbook, which was last updated on 22/06/2012
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 22/06/2012
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 221

When running scenarios using alternative migration, change the counts of migration, or remove them and change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 22/06/2012
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 22/06/2012
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the ExperianJOBS Cons2011-35.xls workbook, which was last updated on 29/08/2012
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Page 222
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

SMigR: males	112.8	108.0	107.9	106.7	105.7	105.1	104.7	104.4	104.3	104.3	104.4	104.4	104.5	104.5	104.3	103.8	103.2	102.7	101.9	101.2		
SMigR: females	93.5	89.7	89.9	89.3	88.7	88.4	88.1	88.2	88.2	88.2	88.5	88.6	88.8	89.1	89.2	89.0	88.7	88.5	87.9	87.2		
Migrants input																						
Migration - Net Flows																						
UK	+7,118	-508	+1,448	+1,376	+1,040	+1,057	+849	+801	+972	+821	+912	+690	+937	+863	+1,141	+1,155	+780	+1,111	+986	+809		+24,356
Overseas	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342		+6,840
Summary of population change																						
Natural change	+1,139	+1,369	+1,306	+1,275	+1,281	+1,271	+1,265	+1,246	+1,232	+1,226	+1,202	+1,174	+1,131	+1,099	+1,050	+997	+947	+904	+869	+826		+22,811
Net migration	+7,460	-166	+1,790	+1,718	+1,382	+1,399	+1,191	+1,143	+1,314	+1,163	+1,254	+1,032	+1,279	+1,205	+1,483	+1,497	+1,122	+1,453	+1,328	+1,151		+31,196
Net change	+8,600	+1,203	+3,096	+2,993	+2,663	+2,670	+2,456	+2,389	+2,546	+2,389	+2,455	+2,206	+2,409	+2,304	+2,533	+2,494	+2,069	+2,357	+2, 197	+1,977		+54,007
Summary of Population estimates/forecasts																						
Population at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0-4	19,230	20,072	20,193	20,445	20,617	20,745	20,833	20,758	20,701	20,678	20,653	20,642	20,611	20,591	20,560	20,528	20,483	20,412	20,378	20,349	20,332	
5-10	20,274	20,791	21,559	22,193	22,780	23,412	24,089	24,646	24,836	25,038	25,168	25,274	25,334	25,248	25,190	25,171	25,156	25,126	25,104	25,078	25,030	
11-15	18,201	18,226	17,671	17,519	17,497	17,494	17,463	17,958	18,572	19,077	19,681	20,339	20,741	20,964	21,184	21,332	21,459	21,534	21,462	21,409	21,371	
16-17	7,687	7,933	7,809	7,662	7,500	7,383	7,325	7,047	6,974	7,288	7,318	7,248	7,484	8,117	8,429	8,463	8,547	8,570	8,755	8,884	8,823	0
18-59Female, 64Male	178,767	183,671	183,252	184,270	185,383	186,174	186,842	187,223	187,435	187,417	187,457	187,543	187,365	187,042	186,894	187,290	187,515	187,701	188,157	188,530	188,931	0
60/65-74	37,401	38,760	39,688	40,615	41,388	42,102	42,732	43,077	43,553	44,060	44,556	44,496	44,689	45,383	46,298	47,311	48,376	49,323	50,196	51,095	51,917	(1)
75-84	18,538	18,883	19,164	19,518	19,777	20,008	20,436	21,236	22,006	22,777	23,546	24,918	26,017	26,866	27,540	28,119	28,639	28,827	29,058	29,242	29,416	(1)
85+	8.625	8.985	9,188	9,397	9.673	9,958	10,227	10,457	10,715	11,003	11,347	11,724	12,147	12,586	13,006	13,421	13,954	14,707	15,444	16,165	16,909	
Total	308,722	317,322	318,524	321,620	324,614	327,277	329,947	332,403	334,792	337,338	339,728	342,183	344,389	346,799	349,102	351,636	354,130	356,199	358,555	360,752	362,729	
Population impact of constraint																						
Number of persons	$-7,304$	+6,272	$-1,354$	+602	+530	+194	+211	+3	-45	+126	-25	+66	-156	+91	+17	+295	+309	-66	+265	+140	-37	
Labour Force																						
Number of Labour Force	164,688	169,465	169,153	170,090	170,994	171,721	172,179	172,627	172,980	173,203	173,283	173,407	173,676	173,988	174,247	174,680	175,153	175,623	176,231	176,807	177,349	12,662
Change over previous year	-4,021	+4,777	-312	+937	+904	+727	+458	+448	+354	+222	+80	+124	+269	+312	+259	+433	+473	+471	+608	+575	+543	
Number of supply units	149,545	153,785	153,614	154,584	155,544	156,364	157,054	157,804	158,474	159,024	159,444	159,905	160,494	161,124	161,704	162,365	162,934	163,504	164,074	164,614	165,124	15,579
Change over previous year	-2,677	+4,240	-171	+970	+960	+820	+690	+750	+670	+550	+420	+460	+590	+630	+580	+660	+570	+569	+570	+540	+510	
Households																						
Number of Households	135,436	139,208	140,187	141,843	143,412	144,995	146,620	148,166	149,650	151,178	152,655	154,056	155,395	156,819	158,183	159,724	161,182	162,612	164,122	165,523	166,751	31,315
Change over previous year	-1,243	+3,772	+979	+1,656	+1,569	+1,583	+1,625	+1,545	+1,485	+1,528	+1,477	+1,402	+1,339	+1,424	+1,364	+1,541	+1,459	+1,430	+1,509	+1,402	+1,228	
Number of supply units	140,659	144,574	145,590	147,310	148,939	150,582	152,270	153,873	155,416	157,003	158,538	159,994	161,385	162,865	164,283	165,883	167,397	168,883	170,450	171,907	173,181	32,522
Change over previous year	-1,295	+3,915	+1,016	+1,720	+1,629	+1,643	+1,688	+1,604	+1,543	+1,587	+1,534	+1,456	+1,391	+1,480	+1,418	+1,600	+1,514	+1,486	+1,567	+1,457	+1,275	
This report was compiled fro	duced on	05/09/2012	using PO	PROUP	software de	veloped by	Bradford	Council, the	University	of Manch	ester and	Andelin Ass	sociates									

Page 225

Page 231

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_EXPERIAN EMPLOYMENT LED LOW UNEMP.xIs
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM\1. POPGROUP v3.1 DF Compatible\Model Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_EXPERIAN EMPLOYMENT LED LOW UNEMP.xls	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig_INUKONS2010.xls workbook, which was last updated on 22/06/2012
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 22/06/2012
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 232

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>

Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 22/06/2012
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 22/06/2012
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the ExperianJOBS Cons2011-35.xls workbook, which was last updated on 29/08/2012
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Page 233
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Population Estim	nd For	ecas			NS	08	U	HOL	P	JEC	$10 N S$									
Components of Pop	Chan			helt,	louc,	Tewk														
	ing July																			
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	1,963	1,973	1,962	1,977	1,997	2,017	2,032	2,042	2,053	2,060	2,063	2,062	2,059	2,056	2,053	2,051	2,048	2,047	2,046	2,046
Female	1,870	1,879	1,869	1,883	1,902	1,921	1,935	1,945	1,956	1,962	1,965	1,964	1,961	1,958	1,956	1,953	1,951	1,949	1,948	1,948
All Births	3,833	3,853	3,831	3,860	3,899	3,939	3,967	3,988	4,009	4,022	4,028	4,026	4,021	4,015	4,009	4,004	3,999	3,996	3,994	3,994
TFR	1.91	1.90	1.88	1.87	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88
Births input																				
Deaths																				
Male	1,313	1,295	1,311	1,313	1,315	1,322	1,329	1,341	1,352	1,364	1,378	1,395	1,417	1,439	1,460	1,485	1,509	1,536	1,563	1,590
Female	1,461	1,450	1,448	1,440	1,434	1,424	1,418	1,416	1,414	1,415	1,418	1,423	1,432	1,441	1,450	1,466	1,484	1,503	1,526	1,553
All deaths	2,774	2,745	2,759	2,753	2,749	2,746	2,747	2,757	2,766	2,779	2,796	2,818	2,848	2,879	2,910	2,950	2,993	3,039	3,088	3,143
SMR: males	87.6	84.0	82.6	80.4	78.3	76.4	74.6	73.2	71.6	70.1	68.7	67.4	66.4	65.4	64.3	63.4	62.5	61.8	61.1	60.6
SMR: females	89.3	86.8	85.2	83.1	81.3	79.3	77.5	75.8	74.1	72.5	70.9	69.4	68.1	66.7	65.4	64.2	63.1	62.1	61.3	60.6
SMR: male \& female	88.5	85.5	83.9	81.8	79.8	77.9	76.1	74.5	72.9	71.3	69.8	68.4	67.2	66.0	64.8	63.8	62.8	62.0	61.2	60.6
Expectation of life	82.1	82.3	82.5	82.6	82.8	83.0	83.1	83.2	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.1	84.2	84.3	84.3	84.4
Deaths input																				
In-migration from the UK																				
Male	9,247	9,309	9,338	9,384	9,418	9,447	9,481	9,505	9,506	9,512	9,545	9,579	9,608	9,655	9,700	9,769	9,806	9,853	9,889	9,936
Female	9,801	9,854	9,883	9,909	9,939	9,955	9,964	9,977	9,967	9,962	9,976	10,008	10,050	10,089	10,158	10,229	10,293	10,346	10,390	10,456
All	19,047	19,163	19,221	19,293	19,358	19,403	19,446	19,482	19,473	19,475	19,521	19,587	19,658	19,744	19,857	19,998	20,099	20,199	20,279	20,392
SMigR: males	54.1	54.1	53.9	53.8	53.7	53.6	53.6	53.6	53.4	53.4	53.4	53.5	53.5	53.5	53.5	53.6	53.5	53.4	53.3	53.3
SMigR: females	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.4	57.3	57.3	57.3	57.3	57.4	57.3	57.4	57.3	57.3	57.2	57.1	57.1
Migrants input																				
Out-migration to the UK																				
Male	8,683	8,729	8,806	8,841	8,886	8,936	8,963	8,988	9,019	9,030	9,049	9,084	9,114	9,142	9,203	9,244	9,297	9,332	9,378	9,412
Female	9,480	9,532	9,560	9,578	9,594	9,598	9,618	9,616	9,625	9,613	9,627	9,646	9,647	9,682	9,748	9,836	9,882	9,939	10,007	10,042
All	18,163	18,261	18,367	18,419	18,479	18,534	18,581	18,604	18,644	18,643	18,676	18,730	18,762	18,823	18,951	19,081	19,178	19,271	19,386	19,454
SMigR: males	50.8	50.7	50.8	50.7	50.7	50.7	50.7	50.6	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.6	50.6	50.5
SMigR: females	55.6	55.6	55.6	55.6	55.5	55.5	55.5	55.4	55.4	55.3	55.2	55.2	55.1	55.0	55.0	55.1	55.0	55.0	55.0	54.9
Migrants input																				
In-migration from Overseas																				
Male	1,788	1,791	1,791	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788
Female	1,672	1,675	1,675	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673
All	3,460	3,466	3,466	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461
SMigR: males	149.3	148.1	146.8	145.7	145.0	144.5	144.2	144.0	144.0	144.1	144.2	144.3	144.4	144.4	144.1	143.7	143.0	142.3	141.5	140.7
SMigR: females	145.7	144.7	143.8	143.0	142.6	142.4	142.3	142.3	142.3	142.5	142.7	142.9	143.0	143.1	142.9	142.4	141.8	141.1	140.4	139.6
Migrants input																				
Out-migration to Overseas																				
Male	1,639	1,652	1,667	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683
Female	1,409	1,421	1,435	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450
All	3,048	3,073	3,102	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133

Components of Population Change				Cheltenham																
Year beginning July 1 st ...																				
Births	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male	674	672	667	671	677	683	687	692	697	700	702	703	703	703	703	702	702	701	700	699
Female	641	640	636	639	645	650	655	659	664	667	669	670	670	669	669	669	668	668	667	666
All Biths	1,315	1,312	1,303	1,311	1,322	1,333	1,342	1,351	1,361	1,367	1,371	1,373	1,373	1,372	1,372	1,371	1,370	1,369	1,367	1,365
TFR	1.74	1.72	1.69	1.69	1.69	1.70	1.70	1.69	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70	1.70
Births input	.	*	*	*	*	*	*	*	*	*	*	*	*	*	*					
Deaths																				
Male	470	460	467	466	468	468	469	471	474	477	481	486	492	500	506	515	523	532	542	551
Female	552	549	546	542	540	536	533	529	528	528	528	529	530	533	536	540	545	551	558	568
All deaths	1,023	1,010	1,013	1,008	1,008	1,005	1,001	1,000	1,002	1,005	1,009	1,015	1,022	1,033	1,042	1,055	1,068	1,083	1,100	1,119
SMR: males	84.5	80.6	79.6	77.5	75.9	74.0	72.2	70.7	69.3	67.9	66.5	65.4	64.2	63.3	62.3	61.5	60.6	59.9	59.4	58.8
SMR: females	84.8	82.9	81.0	78.9	77.4	75.6	73.8	72.1	70.6	69.1	67.5	66.1	64.8	63.6	62.3	61.2	60.1	59.1	58.2	57.6
SMR: male \& female	84.7	81.8	80.4	78.2	76.7	74.8	73.0	71.4	70.0	68.5	67.0	65.8	64.5	63.5	62.3	61.3	60.3	59.5	58.8	58.2
Expectation of life	82.5	82.8	82.9	83.1	83.3	83.4	83.6	83.7	83.8	83.9	84.0	84.1	84.2	84.3	84.4	84.5	84.6	84.6	84.7	84.8
Deaths input				*		*		*	*	*			*			*	*			
In-migration from the UK																				
Male	3,782	3,803	3,815	3,824	3,839	3,845	3,853	3,853	3,846	3,843	3,849	3,864	3,875	3,896	3,919	3,950	3,970	3,995	4,006	4,026
Female	4,126	4,142	4,148	4,156	4,167	4,168	4,169	4,166	4,152	4,143	4,152	4,165	4,190	4,213	4,242	4,288	4,315	4,336	4,357	4,381
All	7,908	7,945	7,962	7,979	8,005	8,013	8,021	8,018	7,998	7,986	8,001	8,029	8,065	8,108	8,161	8,238	8,285	8,331	8,363	8,407
SMigR: males	57.6	57.5	57.3	57.1	57.1	56.9	56.9	56.7	56.5	56.4	56.4	56.5	56.6	56.7	56.7	56.9	56.8	56.9	56.7	56.7
SMigR: females	62.8	62.6	62.6	62.7	62.9	62.9	62.9	62.8	62.6	62.5	62.6	62.8	63.0	63.0	63.0	63.1	63.0	62.9	62.8	62.8
Migrants input			*	*			.	*												
Out-migration to the UK																				
Male	3,653	3,683	3,710	3,722	3,732	3,750	3,758	3,764	3,770	3,767	3,774	3,778	3,782	3,789	3,815	3,833	3,855	3,866	3,894	3,910
Female	4,127	4,166	4,172	4,168	4,163	4,151	4,145	4,142	4,138	4,121	4,116	4,115	4,106	4,119	4,156	4,192	4,220	4,253	4,284	4,305
All	7,780	7,849	7,882	7,890	7,895	7,901	7,904	7,906	7,909	7,889	7,890	7,894	7,888	7,908	7,971	8,025	8,075	8,120	8,178	8,215
SMigR: males	55.7	55.6	55.7	55.6	55.5	55.5	55.5	55.4	55.4	55.3	55.3	${ }_{55}{ }^{3}$	55.2	55.1	55.2	55.2	55.2	55.0	55.1	55.1
SMigR: females	62.8	63.0	63.0	62.9	62.8	62.6	${ }^{62.5}$	62.4	62.4	62.2	62.1	62.0	61.7	61.6	61.7	61.7	61.6	61.7	61.7	61.7
Migrants input		*	*	*	*	*	*	*	*	*			*		*	*	*			
In-migration from Overseas																				
Male	990	991	991	990	990	990	990	990	990	990	990	990	990	990	990	990	990	990	990	990
Female	943	944	944	943	943	943	943	943	943	943	943	943	943	943	943	943	943	943	943	943
All	1,932	1,936	1,936	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933	1,933
SMigR: males	211.4	209.3	207.4	205.8	205.0	204.4	204.1	204.0	204.1	204.3	204.7	205.0	205.2	205.2	204.8	204.1	203.2	202.1	200.9	199.7
SMigR: females	216.4	214.6	213.2	212.3	211.9	211.8	211.9	212.1	212.3	212.8	213.4	213.8	214.1	214.0	213.5	212.6	211.5	210.3	209.1	207.9
Migrants input			*	*	*	*	*	*		*		*	*	*		*	-	-	*	
Out-migration to Overseas																				
Male	849	856	864	873	873	873	873	873	${ }^{873}$	873	${ }^{873}$	873	873	873	873	873	873	873	873	873
Female	737	744	752	760	760	760	760	760	760	760	760	760	760	760	760	760	760	760	760	760
All	1,586	1,600	1,616	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632	1,632
SMigR: males	181.3	180.6	180.7	181.4	180.8	180.2	179.9	179.8	179.9	180.1	180.5	180.7	180.9	180.9	180.6	180.0	179.2	178.2	177.1	176.1
SMigR: females	169.2	169.0	169.7	17.9	170.7	170.6	170.6	170.8	171.0	171.4	171.8	172.2	172.4	172.3	171.9	171.2	170.3	169.3	168.4	167.5
Migrants input	*	*	*	*	*	*	*	*	*	*	*	-	*	*		*	*	*	*	*

Components of Population Change				Gloucester		2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	g July																			
	2011	2012	2013	2014	2015															
Births																				
Male	868	881	875	884	894	905	911	915	918	920	920	918	915	913	912	911	911	911	912	914
Female	827	839	833	842	852	862	868	871	874	876	876	874	872	870	868	868	867	868	869	871
All Biths	1,694	1,720	1,708	1,726	1,746	1,766	1,779	1,786	1,792	1,795	1,795	1,792	1,787	1,783	1,780	1,779	1,778	1,779	1,781	1,785
TFR	2.09	2.09	2.05	2.05	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06
Births input										.	*									
Deaths																				
Male	478	471	477	476	475	476	478	483	486	489	493	498	506	513	520	527	534	542	551	561
Female	511	503	500	496	493	488	484	484	482	482	482	483	485	488	490	495	501	508	516	524
All deaths	989	974	977	972	968	965	963	967	968	971	975	981	991	1,001	1,010	1,022	1,035	1,050	1,067	1,086
SMR: males	94.7	90.7	89.2	86.8	84.2	82.2	80.2	78.7	77.0	75.3	73.7	${ }^{72.3}$	71.3	70.1	68.9	67.8	66.7	65.8	65.0	64.4
SMR: females	99.0	95.8	93.9	91.8	89.7	87.4	85.4	83.8	81.7	80.1	78.3	76.7	75.2	73.7	72.2	71.0	69.8	68.7	67.8	67.1
SMR: male \& female	96.9	93.3	91.6	89.3	86.9	84.7	82.7	81.2	79.3	77.6	75.9	74.4	${ }^{73.2}$	71.8	70.5	69.3	68.2	67.2	66.4	65.7
Expectation of life	81.2	81.5	81.7	81.9	82.1	82.2	82.4	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.7
Deaths input		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
In-migration from the UK																				
Male	3,020	3,030	3,037	3,052	3,062	3,066	3,078	3,085	3,081	3,079	3,092	3,105	3,109	3,125	3,137	3,156	3,169	3,178	3,191	3,205
Female	3,008	3,023	3,036	3,038	3,048	3,050	3,051	3,054	3,049	3,046	3,046	3,054	3,065	3,071	3,094	3,109	3,128	3,143	3,153	3,176
All	6,027	6,053	6,073	6,990	6,110	6,115	6,129	6,139	6,130	6,124	6,138	6,158	6,175	6,196	6,231	6,265	6,297	6,321	6,343	6,381
SMigR: males	45.1	44.8	44.5	44.3	44.2	44.0	43.9	43.9	43.7	43.6	43.7	43.7	43.6	43.7	43.6	43.6	43.5	43.4	43.3	43.2
SMigR: females	45.5	45.4	45.4	45.2	45.1	45.0	44.9	44.8	44.7	44.6	44.5	44.5	44.5	44.4	44.5	44.3	44.3	44.2	44.1	44.2
Migrants input						*	.	*		*	*	*	*	*	*	*	*			
Out-migration to the UK																				
Male	2,791	2,821	2,849	2,867	2,885	2,905	2,916	2,925	2,937	2,947	2,954	2,961	2,980	2,991	3,010	3,030	3,043	3,057	3,070	3,080
Female	2,900	2,914	2,922	2,939	2,954	2,968	2,977	2,980	2,986	2,988	2,996	3,04	3,006	3,022	3,035	3,063	3,074	3,091	3,113	3,120
All	5,691	5,735	5,771	5,807	5,839	5,873	5,893	5,904	5,923	5,935	5,950	5,966	5,986	6,012	6,045	6,093	6,117	6,148	6,183	6,200
SMigR: males	41.7	41.7	41.7	41.6	41.6	41.7	41.6	41.6	41.7	41.7	41.7	41.7	41.8	41.8	41.8	41.8	41.8	41.7	41.7	41.6
SMigR: females	43.8	43.8	43.7	43.7	43.7	43.8	43.8	43.7	43.8	43.7	43.8	43.8	43.7	43.7	43.6	43.7	43.5	43.5	43.5	43.4
Migrants input			*	*	*		*	*				*	*			*				
In-migration from Overseas																				
Male	592	593	593	592	592	592	592	592	592	592	592	592	592	592	592	592	592	592	592	592
Female	533	534	534	533	533	533	533	533	533	533	533	533	533	533	533	533	533	533	533	533
All	1,125	1,127	1,127	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125	1,125
SMigR: males	125.5	124.2	122.9	121.7	120.9	120.3	119.9	119.6	119.5	119.6	119.7	119.8	119.8	119.8	119.5	119.1	118.5	117.9	117.1	116.4
SMigR: females	116.7	115.7	114.8	114.0	113.5	113.1	112.8	112.7	112.7	112.7	112.8	112.9	112.9	112.9	112.8	112.4	111.9	111.4	110.7	110.1
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Out-migration to Overseas																				
Male	606	610	616	621	621	621	621	621	621	621	621	621	621	621	621	621	621	621	621	621
Female	513	517	522	527	527	527	527	527	527	527	527	527	527	527	527	527	527	527	527	527
All	1,119	1,127	1,137	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148	1,148
SMigR: males	128.4	127.8	127.6	127.6	126.8	126.2	125.7	125.4	125.3	125.4	125.5	125.6	125.7	125.6	125.3	124.9	124.3	123.6	122.8	122.1
SMigR: females	112.4	112.1	112.2	112.6	112.1	111.7	111.4	111.3	111.3	111.3	111.4	111.5	111.6	111.6	111.4	111.0	110.6	110.0	109.4	108.7
Migrants input	-		-		-	*	-	-	*	-	-	*	-	*	-	-	-	-	*	-

Components of Population Change				Tewkesbury																
	ng July																			
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	422	420	420	422	426	430	433	436	438	440	441	441	441	440	439	437	436	434	433	433
Female	402	400	400	402	406	409	413	415	418	419	420	420	420	419	418	416	415	414	413	412
All Biths	824	821	820	823	831	839	846	851	856	860	861	862	861	859	856	854	851	848	846	844
TFR	1.92	1.91	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
Births input	*	*	*		*	*	*		*	*	*	*		*						
Deaths																				
Male	365	364	367	371	373	377	382	387	393	397	404	411	418	426	434	443	452	462	469	477
Female	398	397	402	402	400	400	401	403	404	405	409	411	416	420	424	430	438	444	452	461
All deaths	762	761	769	772	773	77	783	790	797	803	812	822	834	846	858	873	890	906	921	938
SMR: males	83.3	80.6	78.6	76.7	74.5	72.9	71.4	70.0	68.6	67.0	65.7	64.6	63.6	62.6	61.6	61.0	60.3	59.7	59.0	58.4
SMR: females	84.8	82.5	81.5	79.6	77.5	75.6	74.1	72.5	70.8	69.3	67.8	66.3	65.2	63.8	62.5	61.4	60.4	59.4	58.6	58.0
SMR: male \& female	84.1	81.6	80.1	78.2	76.0	74.3	72.7	71.2	69.7	68.1	66.8	65.4	64.4	63.2	62.0	61.2	60.4	59.6	58.8	58.2
Expectation of life	82.4	82.6	82.8	82.9	83.1	83.2	83.4	83.5	83.6	83.7	83.9	84.0	84.1	84.2	84.3	84.4	84.5	84.5	84.6	84.7
Deaths input			*			*	*	*	*		*	*	*			*				
In-migration from the UK																				
Male	2.445	2,476	2,486	2,508	2.517	2,537	2,551	2,568	2,580	2.590	2,603	2,610	2,624	2,634	2,643	2,663	2,668	2,679	2,993	2,705
Female	2,667	2,689	2,699	2,715	2,725	2,737	2,745	2,757	2,765	2,774	2,778	2,790	2,794	2,805	2,822	2,833	2,850	2,868	2,880	2,900
All	5,111	5,166	5,185	5,223	5,242	5,274	5,296	5,326	5,345	5,364	5,381	5,400	5,418	5,439	5,465	5,496	5,518	5,547	5,573	5,605
SMigR: males	63.9	64.6	64.6	64.9	64.9	65.1	65.2	65.4	65.5	65.6	65.7	65.6	65.6	65.6	${ }_{656}$	65.7	65.5	${ }^{65.5}$	65.5	65.5
SMigR: females	69.1	69.6	69.6	69.9	70.0	70.2	70.1	70.3	70.4	70.4	70.3	70.3	70.2	70.3	70.2	70.0	70.1	70.2	70.1	70.2
Migrants input			*	*	*		*	*	*		*	*	*			*				
Out-migration to the UK																				
Male	2,239	2,225	2,248	2,252	2,268	2,281	2,288	2,300	2,311	2,316	2,321	2,344	2,352	2,362	2,378	2,381	2,399	2,409	2.414	2,422
Female	2,453	2,452	2,466	2,471	2,477	2,480	2,496	2,495	2,501	2,504	2,515	2,526	2,535	2,541	2,556	2,582	2,588	2,595	2,610	2,618
All	4,692	4,677	4,714	4,723	4,746	4,761	4,784	4,794	4,813	4,820	4,836	4,870	4,887	4,903	4,934	4,963	4,987	5,003	5,024	5,040
SMigR: males	58.6	58.1	58.4	58.3	58.5	58.5	58.5	58.6	58.7	58.6	58.6	58.9	58.8	58.9	59.0	58.8	58.9	58.8	58.7	58.6
SMigR: females	63.6	63.4	63.6	63.6	63.6	63.6	63.8	63.6	63.7	63.6	63.7	63.7	63.7	63.6	63.6	63.8	63.7	63.5	63.5	63.4
Migrants input		*	*	.	-	-	*	-	*	*	.	.	*	*	-	*	-			
In-migration from Overseas																				
Male	206	207	207	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206
Female	196	197	197	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196
All	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403
SMigR: males	80.1	80.0	79.7	79.3	79.2	79.1	79.0	78.9	78.9	78.8	78.9	78.8	78.8	78.8	${ }^{78.7}$	78.5	78.3	78.0	${ }^{77.7}$	77.4
SMigR: females	76.9	76.8	76.5	76.3	76.2	76.2	76.1	76.2	76.2	76.3	76.3	76.4	76.5	76.6	76.6	76.4	76.3	76.1	75.8	75.5
Migrants input		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	-	-		
Out-migration to Overseas																				
Male	184	186	187	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189
Female	159	160	162	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164
All	343	346	349	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353
SMigR: males	71.6	71.9	${ }^{72.3}$	72.8	72.7	72.6	72.5	72.4	72.4	${ }^{72.3}$	72.4	${ }^{72.3}$	${ }^{72.3}$	${ }^{72.3}$	72.2	72.1	71.8	71.6	71.3	71.0
SMigR: females	62.4	62.6	63.0	63.5	63.4	63.4	63.4	63.4	63.5	63.5	63.6	${ }^{63.6}$	63.7	63.8	63.8	${ }^{63.6}$	63.5	63.4	63.1	62.9
Migrants input	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	

Page 242

This file was produced using the scenario file G:IHEaDROOM11. POPGROUP v3.1 DF

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		
	G:IHEaDROOM\1. POPGROUP v3.1 DF Compatible\Model	<< Save flat file with this name (may
	RunsICGTIONS2008POP_1_out\|FlatComp_ONS2008b.xl s	be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2008 Based population projection data.

Comments from the PopBase2008.xls workbook, which was last updated on 26/02/2008
2008 Mid-Year Estimate of population taken from ONS sub-national 2008-based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc
Comments from the FertONS2008.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2008-based projection, 2009-10.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by ONS.
Area counts of births each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of births.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule is for 2009/10 taken from ONS England 2008-based projections.
Comments from the MortONS2008.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2008-based projection, 2009-10.
Area mortality differentials each year computed to approximately reproduce the area mortality projected by ONS.
Area counts of deaths each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of deaths.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule is for 2009/10 taken from ONS England 2008-based projections.
Comments from the Mig_INUKONS2008.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area internal in-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of internal in-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Mig_OUTUKONS2008.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area internal out-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of internal out-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Mig_INOVONS2008.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area overseas in-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of overseas in-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:

Page 243

Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xIs>
Comments from the Mig_OUTOVONS2008.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area overseas out-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of overseas out-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Cons2009-33.xls workbook, which was last updated on 03/12/2010
Population 2009-2033 taken from ONS sub-national 2008 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 244
,dology-guide.pd

गdology-guide.pd
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Components of Population Change				Chelt, Glouc, Tewkes																
Year beginning July 1st .																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	1,963	1,973	1,962	1,977	1,997	2,017	2,032	2,042	2,053	2,060	2,063	2,062	2,059	2,056	2,053	2,051	2,048	2,047	2,046	2,046
Female	1,870	1,879	1,869	1,883	1,902	1,921	1,935	1,945	1,956	1,962	1,965	1,964	1,961	1,958	1,956	1,953	1,951	1,949	1,948	1,948
All Births	3,833	3,853	3,831	3,860	3,899	3,939	3,967	3,988	4,009	4,022	4,028	4,026	4,021	4,015	4,009	4,004	3,999	3,996	3,994	3,994
TFR	1.91	1.90	1.88	1.87	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88
Births input																				
Deaths																				
Male	1,313	1,295	1,311	1,313	1,315	1,322	1,329	1,341	1,352	1,364	1,378	1,395	1,417	1,439	1,460	1,485	1,509	1,536	1,563	1,590
Female	1,461	1,450	1,448	1,440	1,434	1,424	1,418	1,416	1,414	1,415	1,418	1,423	1,432	1,441	1,450	1,466	1,484	1,503	1,526	1,553
All deaths	2,774	2,745	2,759	2,753	2,749	2,746	2,747	2,757	2,766	2,779	2,796	2,818	2,848	2,879	2,910	2,950	2,993	3,039	3,088	3,143
SMR: males	87.6	84.0	82.6	80.4	78.3	76.4	74.6	73.2	71.6	70.1	68.7	67.4	66.4	65.4	64.3	63.4	62.5	61.8	61.1	60.6
SMR: females	89.3	86.8	85.2	83.1	81.3	79.3	77.5	75.8	74.1	72.5	70.9	69.4	68.1	66.7	65.4	64.2	63.1	62.1	61.3	60.6
SMR: male \& female	88.5	85.5	83.9	81.8	79.8	77.9	76.1	74.5	72.9	71.3	69.8	68.4	67.2	66.0	64.8	63.8	62.8	62.0	61.2	60.6
Expectation of life	82.1	82.3	82.5	82.6	82.8	83.0	83.1	83.2	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.1	84.2	84.3	84.3	84.4
Deaths input																				
In-migration from the UK																				
Male	9,247	9,309	9,338	9,384	9,418	9,447	9,481	9,505	9,506	9,512	9,545	9,579	9,608	9,655	9,700	9,769	9,806	9,853	9,889	9,936
Female	9,801	9,854	9,883	9,909	9,939	9,955	9,964	9,977	9,967	9,962	9,976	10,008	10,050	10,089	10,158	10,229	10,293	10,346	10,390	10,456
All	19,047	19,163	19,221	19,293	19,358	19,403	19,446	19,482	19,473	19,475	19,521	19,587	19,658	19,744	19,857	19,998	20,099	20,199	20,279	20,392
SMigR: males	54.1	54.1	53.9	53.8	53.7	53.6	53.6	53.6	53.4	53.4	53.4	53.5	53.5	53.5	53.5	53.6	53.5	53.4	53.3	53.3
SMigR: females	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.4	57.3	57.3	57.3	57.3	57.4	57.3	57.4	57.3	57.3	57.2	57.1	57.1
Migrants input																				
Out-migration to the UK																				
Male	8,683	8,729	8,806	8,841	8,886	8,936	8,963	8,988	9,019	9,030	9,049	9,084	9,114	9,142	9,203	9,244	9,297	9,332	9,378	9,412
Female	9,480	9,532	9,560	9,578	9,594	9,598	9,618	9,616	9,625	9,613	9,627	9,646	9,647	9,682	9,748	9,836	9,882	9,939	10,007	10,042
All	18,163	18,261	18,367	18,419	18,479	18,534	18,581	18,604	18,644	18,643	18,676	18,730	18,762	18,823	18,951	19,081	19,178	19,271	19,386	19,454
SMigR: males	50.8	50.7	50.8	50.7	50.7	50.7	50.7	50.6	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.7	50.6	50.6	50.5
SMigR: females	55.6	55.6	55.6	55.6	55.5	55.5	55.5	55.4	55.4	55.3	55.2	55.2	55.1	55.0	55.0	55.1	55.0	55.0	55.0	54.9
Migrants input																				
In-migration from Overseas																				
Male	1,788	1,791	1,791	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788	1,788
Female	1,672	1,675	1,675	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673	1,673
All	3,460	3,466	3,466	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461	3,461
SMigR: males	149.3	148.1	146.8	145.7	145.0	144.5	144.2	144.0	144.0	144.1	144.2	144.3	144.4	144.4	144.1	143.7	143.0	142.3	141.5	140.7
SMigR: females	145.7	144.7	143.8	143.0	142.6	142.4	142.3	142.3	142.3	142.5	142.7	142.9	143.0	143.1	142.9	142.4	141.8	141.1	140.4	139.6
Migrants input																				
Out-migration to Overseas																				
Male	1,639	1,652	1,667	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683	1,683
Female	1,409	1,421	1,435	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450	1,450
All	3,048	3,073	3,102	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133	3,133

SMigR: males	136.9	136.6	136.7	137.1	136.5	136.0	135.7	135.5	135.5	135.6	135.7	135.8	135.9	135.9	135.6	135.2	134.6	134.0	133.2	132.4		
SMigR: females	122.8	122.8	123.2	123.9	123.6	123.4	123.3	123.3	123.4	123.5	123.7	123.8	124.0	124.0	123.8	123.4	122.9	122.3	121.7	121.0		
Migrants input																						
Migration - Net Flows																						
UK	+884	+902	+854	+873	+878	+868	+864	+878	+829	+831	+845	+857	+896	+920	+907	+918	+921	+928	+893	+938		+17,685
Overseas	+411	+393	+364	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328	+328		+6,749
Summary of population change																						
Natural change	+1,059	+1,107	+1,072	+1,107	+1,150	+1,193	+1,220	+1,231	+1,243	+1,243	+1,232	+1,208	+1,173	+1,135	+1,099	+1,053	+1,006	+957	+906	+851		+22,245
Net migration	+1,296	+1,295	+1,218	+1,202	+1,207	+1,196	+1,193	+1,206	+1,157	+1,160	+1,173	+1,185	+1,224	+1,249	+1,235	+1,246	+1,249	+1,256	+1,221	+1,266		+24,434
Net change	+2,355	+2,402	+2,290	+2,309	+2,357	+2,389	+2,413	+2,437	+2,400	+2,403	+2,405	+2,393	+2,397	+2,384	+2,334	+2,299	+2,255	+2,213	+2,127	+2,117		+46,679
Summary of Population estimates/forecasts																						
Population at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0-4	19,095	19,217	19,072	19,077	19,133	19,232	19,331	19,452	19,601	19,749	19,873	19,963	20,021	20,058	20,064	20,054	20,033	20,006	19,986	19,964	19,950	
5-10	20,499	20,838	21,656	22,108	22,412	22,762	23,125	23,244	23,079	23,104	23,186	23,319	23,446	23,582	23,755	23,917	24,043	24,134	24,192	24,220	24,229	
11-15	18,277	18,126	17,738	17,594	17,572	17,607	17,698	18,235	18,860	19,192	19,553	19,875	19,976	19,826	19,813	19,854	19,938	20,045	20,163	20,319	20,466	
16-17	7,869	7,733	7,655	7,626	7,556	7,454	7,319	7,087	7,080	7,396	7,477	7,457	7,737	8,238	8,349	8,173	8,133	8,147	8,178	8,177	8,194	0
18-59Female, 64Male	185,911	186,621	187,461	188,172	189,070	189,962	190,696	191,260	191,645	191,732	191,933	192,201	192,341	192,328	192,491	192,887	193,043	193,305	193,546	193,808	194,069	0
60/65-74	37,268	38,275	39,079	39,818	40,381	40,917	41,447	41,744	42,175	42,676	43,149	43,084	43,285	43,914	44,786	45,780	46,792	47,719	48,588	49,442	50,284	(0)
75-84	18,731	18,931	19,244	19,593	19,885	20,145	20,578	21,311	22,043	22,701	23,402	24,652	25,662	26,422	27,000	27,484	27,921	28,067	28,257	28,434	28,575	(1)
85+	8,709	8,973	9,211	9,418	9,706	9,993	10,267	10,541	10,828	11,161	11.541	11,968	12,444	12,941	13,435	13,878	14,423	15,158	15,884	16,557	17,271	
Total	316,359	318,714	321,116	323,406	325,715	328,072	330,461	332,874	335,311	337,711	340,114	342,519	344,912	347,309	349,693	352,027	354,326	356,581	358,794	360,921	363,038	$\begin{aligned} & 0^{0.679} \\ & 0 \end{aligned}$
Population impact of constraint																						
Number of persons	+5	-13	+10	-26	-6	-9	-16	-8	+19	-7	-17	-4	-4	+3	+4	-9	+6	-10	+1	-28	+16	
Households																						
Number of Households	138,496	140,111	141,709	143,273	144,875	146,466	148,057	149,655	151,253	152,774	154,303	155,740	157,216	158,684	160,116	161,529	162,946	164,386	165,834	167,210	168,566	30,070
Change over previous year	+1,577	+1,614	+1,599	+1,564	+1,602	+1,591	+1,591	+1,599	+1,598	+1,521	+1,529	+1,437	+1,477	+1,468	+1,431	+1,413	+1,417	+1,440	+1,448	+1,376	+1,356	
Number of supply units	143,850	145,526	147,186	148,810	150,473	152,125	153,777	155,436	157,096	158,675	160,262	161,753	163,286	164,811	166,297	167,764	169,236	170,731	172,235	173,664	175,073	31,223
Change over previous year	+1,638	+1,676	+1,660	+1,624	+1,663	+1,652	+1,652	+1,660	+1,659	+1,579	+1,587	+1,492	+1,533	+1,524	+1,486	+1,468	+1,472	+1,496	+1,504	+1,429	+1,409	
Labour Force																						
Number of Labour Force	171,126	172,020	172,882	173,679	174,442	175,192	175,697	176,345	176,957	177,266	177,547	177,852	178,376	178,771	179,124	179,439	179,798	180,284	180,692	181,136	181,684	10,558
Change over previous year	+1,262	+894	+862	+798	+763	+749	+505	+648	+611	+310	+280	+305	+524	+396	+353	+315	+359	+486	+408	+444	+548	
Number of supply units	155,791	156,804	157,783	158,703	159,694	160,736	161,557	162,514	163,431	164,071	164,683	165,321	166,169	166,821	167,306	167,759	168,105	168,572	168,964	169,387	169,908	14,118
Change over previous year	+1,346	+1,013	+979	+920	+990	+1,043	+821	+957	+917	+640	+613	+638	+849	+652	+484	+453	+346	+468	+392	${ }^{+423}$	+521	

Page 251

Components of Population Change				Tewkesbury																
Year beginning July 1st																				
Births		2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Male	422	420	420	422	426	430	433	436	438	440	441	441	441	440	439	437	436	434	433	433
Female	402	400	400	402	406	409	413	415	418	419	420	420	420	419	418	416	415	414	413	412
All Biths	824	821	820	823	831	839	846	851	856	860	861	862	861	859	856	854	851	848	846	844
TFR	1.92	1.91	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
Births input	*	*	*			*			*	*	*				*					
Deaths																				
Male	365	364	367	371	373	377	382	387	393	397	404	411	418	426	434	443	452	462	469	477
Female	398	397	402	402	400	400	401	403	404	405	409	411	416	420	424	430	438	444	452	461
All deaths	762	761	769	772	773	777	783	790	797	803	812	822	834	846	858	873	890	906	921	938
SMR: males	83.3	80.6	78.6	76.7	74.5	72.9	71.4	70.0	68.6	67.0	65.7	64.6	63.6	62.6	61.6	61.0	60.3	59.7	59.0	58.4
SMR: females	84.8	82.5	81.5	79.6	77.5	75.6	74.1	72.5	70.8	69.3	67.8	66.3	65.2	63.8	62.5	61.4	60.4	59.4	58.6	58.0
SMR: male \& female	84.1	81.6	80.1	78.2	76.0	74.3	72.7	71.2	69.7	68.1	66.8	65.4	64.4	63.2	62.0	61.2	60.4	59.6	58.8	58.2
Expectation of life	82.4	82.6	82.8	82.9	83.1	83.2	83.4	83.5	83.6	83.7	83.9	84.0	84.1	84.2	84.3	84.4	84.5	84.5	84.6	84.7
Deaths input			*			*		*	*		*	*				*	*			
In-migration from the UK																				
Male	2,445	2,476	2,486	2,508	2,517	2,537	2,551	2,568	2,580	2,590	2,603	2,610	2,624	2,634	2,643	2,663	2,668	2,679	2,693	2,705
Female	2,667	2,689	2,699	2,715	2,725	2,737	2,745	2,757	2,765	2,774	2,778	2,790	2,794	2,805	2,822	2,833	2,850	2,868	2,880	2,900
All	5,111	5,166	5,185	5,223	5,242	5,274	5,296	5,326	5,345	5,364	5,381	5,400	5,418	5,439	5,465	5,496	5,518	5,547	5,573	5,605
SMigR: males	63.9	64.6	64.6	64.9	64.9	65.1	65.2	65.4	65.5	65.6	65.7	65.6	65.6	65.6	65.6	65.7	65.5	65.5	65.5	65.5
SMigR: females	69.1	69.6	69.6	69.9	70.0	70.2	70.1	70.3	70.4	70.4	70.3	70.3	70.2	70.3	70.2	70.0	70.1	70.2	70.1	70.2
Migrants input			*	*			*	*												
Out-migration to the UK																				
Male	2,239	2,225	2,248	2,252	2,268	2,281	2,288	2,300	2,311	2,316	2,321	2,344	2,352	2,362	2,378	2,381	2,399	2,409	2.414	2,422
Female	2,453	2,452	2,466	2,471	2,477	2,480	2,496	2,495	2,501	2,504	2,515	2,526	2,535	2,541	2,556	2,582	2,588	2,595	2,610	2,618
All	4,692	4,677	4,714	4,723	4.746	4,761	4,784	4,794	4,813	4,820	4,836	4,870	4,887	4,903	4,934	4,963	4,987	5,003	5,024	5,040
SMigR: males	58.6	58.1	58.4	58.3	58.5	58.5	58.5	58.6	58.7	58.6	58.6	58.9	58.8	58.9	59.0	58.8	58.9	58.8	58.7	58.6
SMigR: females	63.6	63.4	63.6	63.6	63.6	63.6	63.8	63.6	63.7	${ }^{63.6}$	63.7	63.7	63.7	63.6	63.6	63.8	63.7	63.5	63.5	63.4
Migrants input		*	*	*	*	*	*	*	*	*	*	*	*			*	*			
In-migration from Overseas																				
Male	206	207	207	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206	206
Female	196	197	197	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196	196
All	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403	403
SMigR: males	80.1	80.0	79.7	79.3	79.2	79.1	79.0	78.9	78.9	78.8	78.9	78.8	78.8	78.8	78.7	78.5	78.3	78.0	77.7	77.4
SMigR: females	76.9	76.8	76.5	76.3	76.2	76.2	76.1	76.2	76.2	76.3	76.3	76.4	76.5	76.6	76.6	76.4	76.3	76.1	75.8	75.5
Migrants input		*	*	*	*	*	*	*			*	*	*			*	*			
Out-migration to Overseas																				
Male	184	186	187	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189
Female	159	160	162	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164	164
All	343	346	349	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353	353
SMigR: males	71.6	71.9	${ }^{72.3}$	72.8	72.7	72.6	72.5	72.4	72.4	${ }^{72.3}$	${ }^{72.4}$	${ }^{72.3}$	${ }^{72.3}$	72.3	${ }^{72.2}$	72.1	71.8	71.6	71.3	71.0
SMigR: females	62.4	62.6	63.0	63.5	63.4	63.4	63.4	63.4	63.5	63.5	63.6	63.6	63.7	63.8	63.8	63.6	63.5	63.4	63.1	62.9
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Page 253

This file was produced using the scenario file G:IHEaDROOM11. POPGROUP v3.1 DF

Forecast after model set up to replicate ONS 2008 Based population projection data.

Comments from the PopBase2008.xls workbook, which was last updated on 26/02/2008
2008 Mid-Year Estimate of population taken from ONS sub-national 2008-based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc
Comments from the FertONS2008.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2008-based projection, 2009-10.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by ONS.
Area counts of births each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of births.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule is for 2009/10 taken from ONS England 2008-based projections.
Comments from the MortONS2008.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2008-based projection, 2009-10.
Area mortality differentials each year computed to approximately reproduce the area mortality projected by ONS
Area counts of deaths each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of deaths.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule is for 2009/10 taken from ONS England 2008-based projections.
Comments from the Mig_INUKONS2008.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area internal in-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of internal in-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
 Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Mig_OUTUKONS2008.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area internal out-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of internal out-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Mig_INOVONS2008.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area overseas in-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of overseas in-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:

Page 254

Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Mig_OUTOVONS2008.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2008-based projection, 2009-10.
Area overseas out-migration differentials each year computed to approximately reproduce the area migration projected by ONS.
Area counts of overseas out-migrants each year taken from ONS sub-national 2008-based projection.
If alternative assumptions are made in a scenario not intended to replicate ONS exactly, remove the counts of migrants.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_ 2008.xls>
Comments from the Cons2009-33.xls workbook, which was last updated on 03/12/2010
Population 2009-2033 taken from ONS sub-national 2008 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2008--based-projections/2008-based-subnational-population-projections-for-england--methc
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 255

Jdology-guide.pd

गdology-guide.pd
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins
ıersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

\％			O．	¢		ミ さ
ััฐัู						
ั๊						
へิ						
ัّ			¢	\％		
～ั		¢ ¢ ¢ ¢ \％				吴腎爰违等。
べ̃	\％\％\％\％\％	牵				
ั๊	N®®					
జ̃						
ัั						
ัิ		F			®\％	
$\stackrel{\text { ® }}{\sim}$				\％		
$\stackrel{\infty}{\sim}$				\％\％\％		寺
へ						
$\stackrel{\circ}{\circ}$						
年						
$\stackrel{\text { 寺 }}{\sim}$	员莒等总。					
$\stackrel{\text { ® }}{\text { ¢ }}$	寺䂞梁罦。			¢000me		
$\stackrel{\sim}{5}$	戈呂等号。			N		
－						
				$\begin{array}{ll} \text { J } \\ \stackrel{0}{0} \\ \ddagger \end{array}$		

Migration - Net Flows																							
UK	+181	+138	+87	+87	+104	+126	+144	+149	+149	+178	+196	+239	+276	+304	+318	+338	+346	+347	+354	+363			
Overseas	+63	+47	+30	+13	-12	-37	-36	-36	-36	-36	-36	-35	-35	-35	-35	-36	-36	-36	-36	-36			
Summary of population change																							
Natural change	+409	+442	+443	+438	+419	+416	+411	+405	+400	+394	+384	+373	+359	+344	+327	+309	+294	+279	+265	+249		+7,359	
Net migration	+245	+185	+116	+99	+93	+90	+108	+113	+113	+142	+160	+203	+241	+269	+282	+303	+311	+312	+318	+327		+4,029	
Net change	+654	+627	+559	+537	+512	+506	+519	+518	+513	+535	+544	+576	+599	+613	+609	+611	+605	+590	+583	+576		+11,388	
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	6,514	6,642	6,726	6,820	6,875	6,916	6,904	6,865	6,818	6,777	6,744	6,714	6,687	6,660	6,628	6,592	6,555	6,522	6,494	6,473	6,461		
5-10	6,794	6,829	7,068	7,167	7,321	7,493	7,732	7,871	7,949	8,031	8,074	8,110	8,992	8,051	8,005	7,963	7,928	7,892	7,859	7,826	7,787		
11-15	6,681	6,575	6,323	6,284	6,281	6,238	6,164	6,344	6,468	6,597	6,775	6,972	7,100	7,181	7,277	7,337	7,383	7,377	7,341	7,296	7,256		
16-17	3,158	3,120	3,016	2,934	2,788	2,745	2,772	2,649	2,639	2,742	2,713	2,677	2,776	2,951	3,006	3,024	3,056	3,106	3,169	3,190	3,184		
18-59Female, 64Male	67,357	67,526	67,812	67,837	67,959	68,023	67,949	67,941	67,875	67,681	67,573	67,436	67,277	67,084	66,974	67,000	66,988	67,021	67,071	67,161	67,271		
60/65-74	12,875	13,210	13,471	13,762	13,935	14,099	14,293	14,360	14,507	14,658	14,797	14,775	14,835	15,022	15,310	15,578	15,827	16,128	16,356	16,636	16,912		
75.84	6,965	7,001	7,070	7,204	7,285	7,350	7,459	7,671	7,889	8,059	8,273	8,669	9,035	9,281	9,476	9,642	9,831	9,880	9,993	10,065	10,097		
$85+$	3.668	3.763	3.808	3.846	3,947	4.038	4.135	4,228	4.301	4.414	4.545	4.886	4.814	4,984	5,151	5,299	5.479	5.727	5,959	6.178	6.433		
Total	114,013	114,667	115,295	115,854	116,391	116,903	117,409	117,928	118,446	118,959	119,495	120,039	120,615	121,215	121,827	122,436	123,048	123,652	124,243	124,826	125,401	11,388	
																						\bigcirc	
Population impact of constraint																						0	0
Number of persons	+38	-9	-9	-9	-9	-9	-8	-8	-7	-7	-7	-6	-6	-6	-6	-6	-6	-6	-7	-7	-6	-45	0
Households 0																							Q
																							(
Change over previous year	+518	+454	+421	+390	+376	+378	+416	+408	+410	+399	+391	+350	+371	+377	+371	+385	+400	+435	$\stackrel{+426}{ }$	${ }_{+413}$	+390	-128	N
Number of supply units	53,329	53,805	54,247	54,656	55,050	55,446	55,882	56,309	56,740	57,158	57,568	57,935	58,324	58,719	59,107	59,510	59,930	60,386	60,832	61,265	61,674	8,344	G
Change over previous year	+543	$+476$	$+441$	+409	+394	+396	+436	${ }^{+427}$	+430	+418	+410	+367	+389	+395	+389	+403	+420	+456	+446	+433	+409	-134	\checkmark
																						0	
Labour Force 0																							
Number of Labour Force	62,785	63,039	63,214	63,279	63,366	63,433	63,362	63,390	63,342	63,221	63,115	63,022	63,026	63,029	63,045	63,071	63,159	63,299	63,426	63,560	63,741	957	
Change over previous year	+443	+255	+175	+65	+86	+67	-71	+27	-48	-120	-107	-92	+3	+3	+16	+27	+87	+140	+128	+134	+181	-262	
Number of supply units	55,381	55,605	55,820	55,936	56,073	56,192	56,189	56,273	56,290	56,243	56,208	56,185	56,248	56,250	56,265	56,288	56,366	56,491	56,605	56,725	56,886	1,506	
Change over previous year	+803	+225	+214	+117	+136	+119	-3	+84	+17	-47	-35	-23	+62	+3	+14	+24	+78	+125	+114	+120	+162		
This report was compiled from a forecast produced on 23/05/2012 using POPGROUP software developed by Bradford Council, the University of Manchester and Andelin Associates																							
	2.24	2.23	2.23	2.22	2.22	2.21	2.20	2.20	2.19	2.18	2.18	2.17	2.17	2.16	2.16	2.16	2.15	2.15	2.14	2.14	2.13		

SMigR: males	123.8	124.8	125.4	126.5	127.7	129.6	129.5	129.5	129.7	130.0	130.3	130.6	130.9	131.0	131.0	130.7	130.3	129.8	129.0	128.3		
SMigR: females	102.7	104.1	104.9	105.7	107.2	109.0	109.1	109.2	109.3	109.5	109.9	110.1	110.3	110.4	110.3	110.0	109.6	109.1	108.5	107.9		
Migrants input																						
Migration - Net Flows																						
UK	+1,041	+984	+911	+892	+886	+879	+868	+862	+840	+858	+859	+871	+898	+917	+913	+901	+898	+897	+899	+894		+17,970
Overseas	+276	+246	+213	+181	+133	+84	+84	+85	+85	+85	+85	+86	+86	+85	+85	+85	+85	+84	+84	+85		+2,322
Summary of population change																						
Natural change	+1,347	+1,453	+1,441	+1,412	+1,409	+1,402	+1,377	+1,350	+1,331	+1,311	+1,276	+1,233	+1,183	+1,132	+1,074	+1,016	+966	+923	+884	+841		+24,360
Net migration	+1,317	+1,230	+1,125	+1,073	+1,019	+963	+953	+947	+925	+943	+944	+957	+983	+1,002	+998	+985	+983	+981	+984	+979		+20,292
Net change	+2,664	+2,684	+2,565	+2,485	+2,429	+2,365	+2,330	+2,296	+2,257	$+2,254$	+2,220	+2,190	+2,166	+2,134	+2,072	+2,001	+1,949	+1,904	+1,868	+1,820		+44,653
Summary of Population estimates/forecastsPopulation at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0-4	19,653	20,128	20,360	20,628	20,834	21,017	21,047	20,979	20,890	20,812	20,738	20,660	20,585	20,503	20,403	20,288	20,167	20,058	19,971	19,910	19,883	
5-10	20,665	20,943	21,769	22,344	22,851	23,391	24,055	24,575	24,801	25,048	25,232	25,392	25,392	25,304	25,205	25,112	25,020	24,918	24,819	24,712	24,585	
11-15	18,494	18,323	17,860	17,730	17,730	17,787	17,849	18,358	18,956	19,407	19,937	20,457	20,900	21,128	21,399	21,602	21,772	21,795	21,722	21,625	21,538	
16-17	7,960	7,882	7,810	7,732	7,574	7,455	7,369	7,142	7,119	7,428	7,505	7,492	7,725	8,217	8,459	8,472	8,539	8,688	8,888	8,961	8,948	
18-59Female, 64Male	184,759	185,413	186,196	186,796	187,561	188,203	188,667	188,960	189,097	188,929	188,919	188,918	188,811	188,503	188,353	188,460	188,415	188,535	188,687	188,967	189,302	
60/65-74	37,533	38,607	39,466	40,265	40,915	41,534	42,098	42,427	42,908	43,440	43,954	43,935	44,183	44,882	45,806	46,833	47,891	48,885	49,793	50,724	51,610	
75-84	18,708	18,895	19,219	19,570	19,837	20,074	20,472	21,208	21,905	22,568	23,262	24,522	25,544	26,323	26,942	27,472	27,936	28,108	28,333	28,527	28,695	0
85+	8,687	8,933	9,127	9,308	9,556	9,827	10,094	10,333	10,601	10,902	11,243	11,632	12,058	12,504	12,932	13,332	13,832	14,532	15,212	15,866	16,552	
Total	316,460	319,124	321,807	324,373	326,858	329,287	331,652	333,982	336,278	338,534	340,789	343,009	345,198	347,364	349,498	351,570	353,571	355,520	357,424	359,292	361,112	(${ }^{653}$
Population impact of co																						N
Number of persons	+116	-7	-8	-7	-9	-8	-8	-7	-6	-7	-5	-5	-5	-5	-5	-6	-6	-7	-7	-7	-7	0
Households																						
Number of Households	138,337	139,887	141,398	142,845	144,257	145,714	147,188	148,640	150,072	151,442	152,820	154,091	155,405	156,712	157,999	159,292	160,589	161,933	163,275	164,560	165,793	27,455
Change over previous year	+1,658	+1,549	+1,511	+1,447	+1,412	+1,456	+1,474	+1,452	+1,432	+1,370	+1,377	+1,271	+1,314	+1,307	+1,287	+1,293	+1,297	+1,344	+1,342	+1,285	+1,232	
Number of supply units	143,675	145,282	146,850	148,351	149,815	151,325	152,854	154,361	155,846	157,267	158,696	160,015	161,377	162,733	164,068	165,410	166,756	168,151	169,544	170,878	172,157	28,482
Change over previous year	+1,721	+1,607	+1,568	+1,501	+1,464	+1,510	+1,529	+1,506	+1,485	+1,422	+1,429	+1,319	+1,362	+1,356	+1,335	+1,342	+1,346	+1,395	+1,393	+1,334	+1,279	
Labour Force																						
Number of Labour Force	170,071	170,966	171,734	172,382	172,975	173,539	173,812	174,214	174,545	174,614	174,662	174,707	174,985	175,177	175,369	175,560	175,846	176,293	176,705	177,165	177,687	7,616
Change over previous year	+1,363	+895	+768	+648	+593	+563	+273	+402	+331	+69	+48	+44	+278	+192	+192	+191	+286	+447	+412	+461	+522	
Number of supply units	154,554	155,392	156,276	157,049	157,769	158,463	158,894	159,446	159,925	160,165	160,385	160,603	161,039	161,295	161,475	161,657	161,929	162,349	162,735	163,164	163,653	9,099
Change over previous year	+2,332	+839	+884	+774	+720	+694	+431	+552	+479	+239	+220	+218	+436	+256	+181	+181	+273	+420	+385	+430	+488	
This report was compiled from a forecast produced on 23/05/2012 using POPGROUP software developed by Brafford Council, the University of Manchester and Andelin Associates																						
	2.29	2.28	2.28	2.27	2.27	2.26	2.25	2.25	2.24	2.24	2.23	2.23	2.22	2.22	2.21	2.21	2.20	2.20	2.19	2.18	2.18	

Migration - Net Flows																							
UK	+315	+283	+261	+243	+222	+202	+182	+168	+149	+136	+122	+116	+109	+102	+94	+78	+71	+66	+63	+59			
Overseas	+108	+97	+85	+73	+55	+37	+37	+37	+37	+37	+37	+38	+37	+37	+37	+37	+37	+37	+37	+37			
Summary of population change																							
Natural change	+799	+867	+861	+850	+860	+862	+853	+839	+832	+824	+809	+790	+769	+749	+726	+704	+687	+675	+665	+653		+15,677	
Net migration	+422	+380	+346	+316	+277	+239	+220	+205	+186	+173	+160	+153	+147	+139	+131	+115	+108	+103	+100	+95		+4,015	
Net change	+1,221	+1,247	+1,207	+1,166	+1,138	+1,102	+1,072	+1,045	${ }^{+1,018}$	+997	+969	+943	+916	+889	+857	+819	+795	+778	+764	+748		+19,692	
Summary of Population	timate	/forec	asts																				
Popu	at mid-y																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	8,452	8.671	8,765	8,890	8,989	9,093	9,128	9,110	9,082	9,054	9,024	8,987	8,947	8,904	8,853	8,797	8,740	8,691	8,655	8,633	8.629		
5-10	8,399	8.616	9,061	9,337	9,610	9,843	10,122	10,367	10,453	10,566	10,654	10,745	10,764	10,735	10,701	10,667	10,628	10,582	10,533	10,482	10,422		
11-15	7,161	7.072	${ }_{6,882}$	6,878	6,864	6,954	7,075	${ }_{7} 7.329$	7.623	7.858	8.091	8,298	${ }^{8,493}$	8.579	${ }^{8,695}$	8,785	${ }_{8,872}$	8,897	${ }^{8,876}$	8.845	${ }^{8,816}$		
16-17	2,939	2,896	2,950	2,932	2,899	2.845	2,751	2,672	2,724	2,860	2,906	2,944	3,036	3,252	3,367	3,359	3,378	3,435	${ }^{3,529}$	3,566	${ }^{3,562}$		
18-59Female, 64Male	71,047	71,509	71,958	72,371	72,842	73,249	73,589	73,782	73,884	73,871	73,990	74,083	74,119	74,068	74,055	74,123	74,160	74,280	74,372	74,500	74,699		
60/65-74	12,663	13,012	13,271	13,584	13,841	14,078	14,286	14,458	14,705	14,987	15,239	15,298	15,484	15.814	16,235	16,736	17,219	17,647	18,053	18,455	18,802		
75-84	6,247	6,288	6,347	6,383	6,429	6,462	6,606	6,838	7,035	7,249	7,441	7,848	8,178	8.475	8,696	8,885	9,010	9,047	9,133	9,231	9,335		
$85+$	2.608	2.672	2,751	2.817	2.883	2.971	3,039	3,112	3,206	3.286	3,383	3.495	3,621	3.729	3.843	3,952	4.115	4,337	4.545	4.748	4.944		
Total	119,516	120,737	121,984	123,191	124,357	125,494	126,596	127,668	128,713	129,731	130,728	131,698	132,641	13,557	134,445	135,302	136,122	136,917	137,695	138,460	139,208	19,692	
Population impact of constraint																							0
Number of persons	+45	-1	-2	-1	-2	-2	-2	-2	-1	-2	-1	-1	-1	-1	-2	-2	-3	-3	-3	-3	-3		(1)
Households																							(1)
Number of Households	51,410	52,061	52,718	53,335	53,938	54,568	55,194	55,807	56,413	56,979	57,546	58,082	58,625	59,172	59,709	60,237	60,760	61,321	61,869	62,396	62,904	11,495	
Change over previous year	+695	+651	+657	$+617$	+603	+630	+626	+613	+606	+566	+567	+536	+544	+547	+537	+527	+524	+560	+549	+527	+508		N
Number of supply units	53,774	53,949	54,630	55,270	55,895	56,547	57,196	57,831	58,459	59,046	59,633	60,189	60,752	61,318	${ }_{61,875}$	62,421	62,964	63,545	64,113	64,659	65,186	11,912	0
Change over previous year	+720	$+675$	$+681$	$+640$	+625	+653	$+649$	+635	$+628$	+587	+588	+555	+563	+567	+557	+546	+543	+581	+568	+546	+527		-
Labour Force																							
Number of Labour Force	64,718	65,218	65,652	66,052	66,387	66,717	66,951	67,229	67,456	67,571	67,671	67,769	67,967	68,995	68,209	68,327	68,493	68,719	68,919	69,139	69,384	4,666	
Change over previous year	+678	+500	+434	+400	+335	+330	+234	+278	+227	+115	+99	+98	+198	+129	+114	+118	+166	+227	+200	+220	+245		
Number of supply units	64,718	65,218	65,723	66,194	66,001	67,004	67,311	67,663	67,964	68,153	68,325	68,498	68,771	68,974	69,089	69,208	69,376	69,606	69,809	70,031	70,280	5.561	
Change over previous year	+1,297	+500	+505	+472	+407	+402	+307	+352	+301	+189	+173	+172	+273	+203	+115	+119	+168	+230	+202	+222	+249		
This report was compiled from a foreca	duced on	3/05/2012	using POP	GROUP	oftware de	veloped by	Bradford	Council, the	University	of Manch	ster and	ndelin Ass	ociates										
	2.32	2.32	2.31	2.31	2.31	2.30	2.29	2.29	2.28	2.28	2.27	2.27	2.26	2.26	2.25	2.25	2.24	2.23	2.23	2.22	2.21		

Components of Population Change						Tewkesbury														
	ing July	st																		
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	471	475	476	474	475	474	472	471	472	472	471	469	467	465	461	459	457	456	456	455
Female	449	453	453	451	452	451	450	449	449	449	448	447	445	442	439	437	435	434	434	434
All Biths	920	928	929	925	927	926	922	920	921	921	919	916	912	907	901	896	892	890	889	889
TFR	2.07	2.07	2.06	2.03	2.02	1.99	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.89	1.88	1.87	1.87	1.87	1.87
Births input	*	*	*						*	*	*			*	*					
Deaths																				
Male	382	385	391	392	393	397	402	407	412	417	423	430	437	444	451	459	468	476	483	490
Female	400	399	402	408	405	405	406	408	410	411	414	417	421	424	429	434	440	446	452	459
All deaths	782	784	793	800	797	802	808	815	822	828	837	847	858	868	880	893	908	922	935	950
SMR: males	90.9	88.9	87.6	85.3	82.7	81.2	79.6	78.1	76.6	75.0	73.6	72.5	71.4	70.4	69.2	68.4	67.7	66.9	66.1	65.3
SMR: females	88.9	86.1	84.8	83.9	81.3	79.6	78.0	76.5	75.0	73.3	71.9	70.4	69.1	67.7	${ }_{6} 6.6$	65.4	64.3	63.1	62.1	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	82.0	80.4	78.8	77.3	75.8	74.2	72.8	71.4	70.3	69.1	67.9	66.9	66.0	65.0	64.1	63.3
Expectation of life	81.7	81.9	82.0	82.2	82.4	82.5	82.6	82.8	82.9	83.0	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9	84.0	84.1
Deaths input			*					*				*	*			*				
In-migration from the UK																				
Male	2,416	2,436	2,455	2,471	2,485	2,498	2,508	2.519	2,528	2.536	2,542	2,548	2,555	2,562	2,571	2,580	2,589	2,599	2,610	2,620
Female	2,705	2,722	2,738	2,750	2,762	2,770	2,777	2,783	2,788	2,791	2,794	2,998	2,803	2,810	2,821	2,833	2,847	2,862	2,877	2,892
All	5,121	5,158	5,193	5,221	5,247	5,268	5,285	5,302	5,315	5,326	5,337	5,346	5,358	5,373	5,393	5,413	5,436	5,461	5,487	5,512
SMigR: males	61.4	61.6	61.7	61.7	61.7	61.8	61.8	61.8	61.8	61.8	61.9	61.7	61.7	61.7	61.6	61.5	61.5	61.4	61.3	61.2
SMigR: females	67.9	68.0	67.9	67.9	67.8	67.7	67.5	67.5	67.4	67.2	67.1	66.9	66.8	66.7	6.6	66.4	66.3	66.2	66.1	66.0
Migrants input				*			*	*												
Out-migration to the UK																				
Male	2,170	2,174	2,191	2,203	2,219	2,238	2,247	2,257	2,265	2,269	2,272	2,291	2,302	2,312	2,323	2,336	2,348	2,355	2,367	2,382
Female	2,405	2,420	2,439	2,455	2,467	2,480	2,496	2,500	2,508	2,513	2,524	2,539	2,544	2,551	2,568	2,593	2,606	2,622	2,638	2,657
All	4,576	4,594	4,629	4,658	4,687	4,718	4,743	4,756	4,773	4,782	4,796	4,830	4,845	4,862	4,891	4,929	4,955	4,978	5,005	5,039
SMigR: males	55.2	55.0	55.0	55.1	55.2	55.3	55.3	55.3	55.4	55.3	55.3	55.5	55.6	55.6	55.7	55.7	55.7	55.6	55.6	55.6
SMigR: females	60.4	60.4	60.5	60.6	60.6	60.6	60.7	60.6	60.6	60.5	60.6	60.7	60.6	60.6	60.6	60.8	60.7	60.7	60.6	60.6
Migrants input			*	*	*	*	*	*	*	*	*	*	*			*	*			
In-migration from Overseas																				
Male	225	227	228	229	227	228	229	229	229	229	230	230	230	230	230	230	230	231	231	231
Female	196	201	201	200	200	201	201	201	201	202	202	202	202	201	202	201	202	202	201	201
All	421	428	428	429	427	429	430	430	431	431	431	432	432	431	432	431	432	432	432	433
SMigR: males	84.6	84.9	84.6	84.8	83.8	83.8	84.0	84.2	84.2	84.2	84.3	84.5	84.5	84.5	${ }^{84.6}$	84.4	84.2	84.1	83.7	83.4
SMigR: females	74.5	75.7	75.0	74.3	74.1	74.2	74.0	74.0	74.1	74.2	74.3	74.3	74.3	74.2	${ }^{74.3}$	73.9	74.0	73.7	73.2	73.0
Migrants input			*	*			*	*	*		*	*	*		*	*	*			
Out-migration to Overseas																				
Male	174	178	180	184	185	189	190	190	190	190	190	191	191	191	191	191	191	192	192	192
Female	141	148	149	150	153	156	157	157	157	157	158	157	157	157	157	157	157	157	157	157
All	315	326	330	334	338	345	346	347	347	347	348	348	348	348	348	348	348	349	348	349
SMigR: males	65.5	66.6	67.0	68.0	68.3	69.4	69.7	69.8	69.8	69.8	69.9	70.1	70.1	70.1	70.2	70.1	69.9	69.9	69.6	69.3
SMigR: females	53.8	55.8	55.8	55.8	56.6	57.8	57.7	57.6	57.8	57.8	57.9	57.9	57.9	57.8	57.9	57.6	57.7	57.5	57.0	56.9
Migrants input	*		*	*	*	*	*	*	*	*	*	*	*	.	*	*	*	*		*

Migration - Net Flows																							
UK	+545	+564	+564	+563	+560	+551	+542	+545	+542	+545	+541	+517	+513	+510	+501	+484	+481	+483	+482	+473			
Overseas	+105	+102	+99	+95	+89	+83	+83	+83	+83	+84	+84	+84	+84	+84	+84	+84	+83	+83	+83	+83			
Summary of population change																							
Natural change	+138	+144	+137	+125	+130	+123	+113	+105	+99	+93	+82	+70	+55	+39	+21	+2	-15	-31	-46	-61			
Net migration	+650	+666	+662	+658	+649	+634	+625	+629	+626	+628	+624	+600	+596	+594	+585	+568	+564	+567	+566	+556		+12,248	
Net change	+789	+810	+799	+782	+779	+757	+738	+734	+725	+721	+707	+670	+651	+633	+606	+570	+549	+536	+520	+496			
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	4,686	4,815	4,869	4,918	4,970	5,008	5,014	5,004	4,990	4,980	4,970	4,960	4,951	4,939	4,922	4,898	4,872	4,846	4,822	4,804	4,793		
5-10	5,473	5,497	5,640	5,841	5,920	6,055	6,201	6,337	6,398	6,450	6.503	6.538	6,536	6.519	6,499	6,482	6,464	6,445	6,426	6,404	6,376		
11-15	4,651	4,676	4,655	4,568	4,585	4,596	4,611	4,684	4,864	4,951	5.071	5,187	5,307	5,367	5,427	5,479	5,517	5,521	5,505	5,483	5,466		
16-17	1,863	1,866	1,845	1,867	1,888	1,864	1,846	1,821	1,756	1.827	1,885	1,871	1,914	2,013	2,085	2,089	2,105	2,147	2,190	2,205	2,202		
18-59Female, 64Male	46,355	46,377	46,426	46,589	46,760	46,931	47,129	47,237	47,338	47,377	47,356	47,399	47,415	47,351	47,324	47,337	47,267	47,233	47,244	47,306	47,331		
60/65-74	11,996	12,385	12,724	12,919	13,139	13,356	13,518	13,610	13,696	13,795	13,917	${ }^{13,862}$	13,865	14,046	14,261	14,519	14,845	15,110	15,385	15,632	15,896		
75-84	5,495	5,607	5,802	5,982	6,123	6,262	6,407	6,700	6,982	7,261	7.548	8,005	8,331	8,567	8.770	8,945	9,095	9,181	9,207	9,232	9,263		
$85+$	2.410	2.498	2.568	2.644	2.725	2.818	2,921	2,992	3,994	3,202	3,315	3,452	3.623	3,791	3,938	4,081	4.238	4.468	4.707	4,940	5.175		
Total	82,930	83,719	84,529	85,328	86,111	86,890	87,647	88,386	89,119	89,844	90,566	91,272	91,942	92,593	93,226	93,832	94,402	94,951	95,486	96,007	96,502	13,572	
Population impact of constraint																							0
Number of persons	+32	+3	+3	+3	+3	+2	+2	+2	+2	+2	+3	+3	+3	+3	+3	+3	+2	+2	+2	+2	+2		00
Households																							(1)
Number of Households	36,052	36,496	36,229	37,369	37,802	38,251	38,683	${ }^{39,114}$	39,529	39,935	40,354	40,739		${ }^{41,522}$	${ }^{41,901}$	42,283	42,656	43,004	43,372	${ }^{43,717}$	44,052	${ }^{8.000}$	
Change over previous year	+446	+444	+433	+439	+433	+449	+432	+432	+415	+405	+419	+385	+399	+384	+379	+382	+373	+349	+368	+345	+334		N
Number of supply units	37,071	37,528	37,973	38,425	38,870	39,332	39,777	40,220	40,647	41,064	41,495	41,891	42,301	42,996	43,086	43,478	43,862	44,220	44,599	44,954	45,297	8,226)
Change over previous year	+458	+457	+445	+452	+445	+462	+444	+444	${ }^{+427}$	+417	+431	+396	+410	+395	+390	+392	+384	+358	+378	+355	+344		ω
Labour Force																							
Number of Labour Force	42,568	42,709	42,868	43,050	43,222	43,389	43,499	43,596	43,748	43,822	43,877	43,915	43,992	44,053	44,115	44,162	44,195	44,275	44,359	44,466	44,561	1,993	
Change over previous year	+242	+141	+158	+183	+172	+166	+110	+97	+152	+74	+56	+38	+77	+61	+63	+47	+33	+80	+84	+107	+95		
Number of supply units	34,455	34,569	34,734	34,919	35,095	35,267	35,394	35,510	35,671	35,769	35,852	35,920	36,021	36,070	36,122	36,160	36,187	36,252	36,321	36,409	36,487	2,032	
Change over previous year	+232	+114	+165	+185	+176	+172	+127	+116	+161	+98	+83	+68	+100	+50	+51	+38	+27	+65	+69	+88	+78		
This report was compiled from a forecast produced on 23/05/2012 using POPGROUP software developed by Bradford Council, the University of Manchester and Andelin Associates																							
	2.30	2.29	2.29	2.28	2.28	2.27	2.27	2.26	2.25	2.25	2.24	2.24	2.23	2.23	2.22	2.22	2.21	2.21	2.20	2.20	2.19		

Page 264

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
Compatible\Model RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_inplscenario_ONS2010
baseline.xls
Tick to save as new flat file

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTUKONS2010.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 265

When running scenarios using alternative migration, change the counts of migration, or remove them and change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Cons2011-35.xIs workbook, which was last updated on 03/12/2010
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012

This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 86 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 88 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 87 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 8 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 53 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 62 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 84 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 88 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 82 in flow 3 - adjusted

Page 266

Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 89 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Male age 90 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 19 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 89 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2011, Female age 90 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2011, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 7 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 41 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 50 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 89 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Male age 90 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 7 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 22 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 70 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 89 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2011, Female age 90 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 86 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 86 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 90 in flow 3 - adjusted

Page 267

Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2012, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2012, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 41 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2012, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 85 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 56 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 84 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 85 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 87 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 83 in flow 4 - adjusted

Page 268

Constraint caused negative migrant flow for group Cheltenham in year 2013, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2013, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2013, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 41 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 20 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2013, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 72 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 87 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 88 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 86 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 85 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 83 in flow 3 -adjuste Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 84 in flow 4 - adjusted

Page 269

Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2014, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2014, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 20 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 89 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2014, Female age 90 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 88 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 85 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 87 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 69 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 77 in flow 4 - adjusted

Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2015, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2015, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 72 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 20 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2015, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 88 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 85 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 62 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 78 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 88 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2016, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2016, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2016, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 63 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 88 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2017, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2017, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2017, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 79 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 90 in flow 3 - adjusted

Page 273

Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2018, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2018, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2018, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 65 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 81 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2019, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2019, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 70 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2019, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 56 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 90 in flow 3 - adjusted

Page 275

Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2020, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2020, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2020, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 67 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 76 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 79 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2021, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2021, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2021, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 75 in flow 3 - adjusted

Page 277

Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 80 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2022, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2022, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2022, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 56 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 78 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2023, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2023, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2023, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 84 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 76 in flow 3 - adjusted

Page 279

Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2024, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2024, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2024, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 56 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 85 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 89 in flow 3 - adjusted

Page 280

Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2025, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2025, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2025, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 89 in flow 3 - adjusted

Page 281

Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2026, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2026, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2026, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 74 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 80 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2027, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2027, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2027, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 80 in flow 3 - adjusted

Page 283

Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2028, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2028, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2028, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 78 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2029, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2029, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 83 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2029, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 90 in flow 3 - adjusted

Page 285

Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2030, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2030, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2030, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 83 in flow 3 - adjusted

Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 84 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 82 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2031, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 74 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2031, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2031, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 48 in flow 3 - adjusted

Page 287

Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 81 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2032, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2032, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2032, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 83 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 84 in flow 3 -adjusted

Page 288

Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 81 in flow 3 -adjuste Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 79 in flow 3 -adjuste Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 89 in flow 3 -adjuste Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 84 in flow 4 -adjuste Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2033, Female age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 80 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2033, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2033, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 76 in flow 3 -adjuste Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 76 in flow 3 -adjusted

Page 289

Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 84 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 42 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 48 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 56 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 75 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 80 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 87 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2034, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 78 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2034, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 72 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 78 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 76 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 79 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2034, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 83 in flow 3 -adjusted

Page 290

Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 89 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 76 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 77 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 78 in flow 3 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 84 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 90 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 42 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 48 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 74 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 77 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 82 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 83 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 74 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 75 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 76 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 78 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 81 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 82 in flow 3 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 89 in flow 3 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 90 in flow 3 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 77 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 81 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Cheltenham in year 2035, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 82 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Male age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 81 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Gloucester in year 2035, Female age 88 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 76 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 84 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 85 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 86 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Male age 88 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 77 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 79 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 80 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 83 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 84 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 85 in flow 4 - adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 86 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 87 in flow 4 -adjusted Constraint caused negative migrant flow for group Tewkesbury in year 2035, Female age 88 in flow 4 - adjusted

Page 291

/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Components of Population Change						Chet, Glouc, Tewkes														
Year beginning July 1st ..																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	2,128	2,169	2,169	2,160	2,153	2,148	2,135	2,125	2,122	2,116	2,107	2,096	2,083	2,069	2,055	2,044	2,039	2,037	2,038	2,041
Female	2,027	2,066	2,066	2,057	2,050	2,045	2,033	2,024	2,021	2,015	2,007	1,996	1,984	1,971	1,958	1,947	1,942	1,940	1,941	1,944
All Births	4,155	4,235	4,235	4,217	4,203	4,193	4,168	4,149	4,142	4,131	4,114	4,091	4,066	4,040	4,013	3,991	3,980	3,978	3,979	3,985
TFR	2.11	2.13	2.11	2.09	2.07	2.05	2.02	2.01	2.00	1.99	1.98	1.97	1.96	1.95	1.93	1.93	1.92	1.92	1.92	1.92
Births input																				
Deaths																				
Male	1,345	1,330	1,349	1,361	1,355	1,362	1,368	1,379	1,391	1,400	1,415	1,428	1,447	1,464	1,484	1,505	1,528	1,551	1,572	1,597
Female	1,464	1,451	1,446	1,444	1,438	1,429	1,424	1,421	1,420	1,419	1,423	1,430	1,437	1,445	1,455	1,471	1,486	1,504	1,523	1,547
All deaths	2,809	2,781	2,794	2,805	2,793	2,791	2,791	2,800	2,811	2,820	2,838	2,858	2,884	2,908	2,939	2,975	3,014	3,055	3,095	3,144
SMR: males	93.3	89.9	88.7	87.2	84.6	82.8	80.9	79.4	77.9	76.2	74.9	73.4	72.3	71.0	70.0	68.9	68.0	67.1	66.2	65.5
SMR: females	93.7	91.1	89.3	87.5	85.7	83.7	81.9	80.2	78.6	76.9	75.3	73.9	72.5	71.1	69.8	68.6	67.5	66.4	65.4	64.6
SMR: male \& female	93.5	90.5	89.0	87.3	85.1	83.2	81.4	79.8	78.3	76.6	75.1	73.7	72.4	71.1	69.9	68.8	67.8	66.8	65.8	65.1
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	9,050	9,103	9,153	9,194	9,230	9,256	9,268	9,275	9,274	9,273	9,287	9,307	9,326	9,353	9,395	9,441	9,481	9,527	9,578	9,635
Female	9,852	9,893	9,929	9,958	9,991	10,004	10,005	10,002	9,986	9,975	9,983	10,007	10,030	10,061	10,113	10,177	10,231	10,296	10,368	10,441
All	18,902	18,996	19,082	19,152	19,221	19,260	19,273	19,277	19,261	19,249	19,271	19,314	19,357	19,414	19,509	19,618	19,712	19,822	19,946	20,076
SMigR: males	53.6	53.5	53.3	53.2	53.2	53.1	53.0	52.9	52.9	52.8	52.8	52.9	52.9	52.9	52.9	52.9	52.9	52.9	52.8	52.8
SMigR: females	58.0	57.7	57.5	57.5	57.4	57.4	57.3	57.3	57.2	57.1	57.1	57.1	57.1	57.1	57.1	57.0	56.9	56.9	56.8	56.8
Migrants input																				
Out-migration to the UK																				
Male	8,519	8,578	8,656	8,709	8,745	8,786	8,807	8,817	8,827	8,823	8,834	8,857	8,870	8,891	8,932	8,975	9,018	9,056	9,105	9,164
Female	9,346	9,438	9,518	9,555	9,594	9,599	9,602	9,602	9,596	9,570	9,581	9,589	9,592	9,609	9,667	9,745	9,800	9,873	9,945	10,021
All	17,864	18,015	18,175	18,264	18,339	18,385	18,408	18,418	18,424	18,393	18,415	18,445	18,461	18,500	18,599	18,720	18,817	18,929	19,050	19,185
SMigR: males	50.5	50.4	50.4	50.4	50.4	50.4	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.3	50.2	50.2
SMigR: females	55.0	55.1	55.2	55.1	55.1	55.1	55.0	55.0	54.9	54.8	54.8	54.7	54.6	54.5	54.6	54.6	54.5	54.5	54.5	54.5
Migrants input																				
In-migration from Overseas																				
Male	1,554	1,558	1,561	1,564	1,564	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563	1,563
Female	1,349	1,353	1,356	1,359	1,359	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358	1,358
All	2,903	2,911	2,917	2,923	2,923	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920	2,920
SMigR: males	131.8	131.0	130.2	129.5	129.0	128.4	128.3	128.2	128.4	128.6	128.9	129.2	129.4	129.5	129.4	129.2	128.7	128.1	127.4	126.5
SMigR: females	118.5	117.6	116.9	116.4	116.0	115.6	115.6	115.6	115.7	115.9	116.2	116.4	116.6	116.7	116.6	116.3	115.8	115.3	114.6	113.8
Migrants input																				
Out-migration to Overseas																				
Male	1,456	1,475	1,495	1,515	1,540	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565	1,565
Female	1,168	1,186	1,205	1,223	1,245	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267	1,267
All	2,623	2,661	2,700	2,738	2,786	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832	2,832

\％			－8．			
®ั						
ั๊						
ヘิ	吕吕喜					
ัّ			¢			
ัّ		¢ ¢ \％\％				
ベ	吕咨咢产。					
冗ัّ	ミ̊\％					
สี						
ัั						
ลั		大				
울						
$\stackrel{\infty}{\sim}$						
$\stackrel{\rightharpoonup}{\sim}$		\％$\overbrace{\text { O }}^{\sim}$				
$\stackrel{\circ}{\circ}$						
$\stackrel{\substack{2}}{\substack{~}}$						
$\stackrel{ \pm}{\sim}$	员总等馬。					
$\stackrel{N}{0}_{\sim}^{0}$	寺呂姿㝵。					
～N．	戈贺等号。			N		

\％	岛吕莒帝帝。					
ัิ	吕監哭亭。					
$\stackrel{\text { ®̃ }}{\text { ® }}$		莴				
ヘิ	岛嵒寺总。					
先	㐭監					
～ั๊					\％\％\％\％	
ત̃	Q ¢ ¢ ¢ 옫N．					
ัّ					\％®\％	
～ี						
ัั	\％\％®	¢				
ัิ						
$\stackrel{\circ}{\sim}$						
$\stackrel{\infty}{\text { ® }}$	\％	¢				
$\stackrel{\text { ® }}{ }$						
$\stackrel{\circ}{\circ}$					\％®\％	
$\stackrel{\text { ¢ }}{\sim}$						
$\stackrel{\text { c }}{\text { ¢ }}$				®		
$\stackrel{\text { ® }}{\text { ¢ }}$						
ㄷ	另吕营管。				¿®	
No						

Migration - Net Flows																							
UK	+547	+565	+565	+564	+561	+552	+543	+547	+544	+546	+542	+518	+514	+512	+503	+486	+482	+485	+484	+474	+467	+10,531	
Overseas	+104	+101	+97	+94	+88	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+82	+1,718	
Summary of population change																							
Natural change	+138	+144	+137	+125	+130	+123	+113	+105	+99	+93	+82	+70	+55	+39	+21	+2	-15	-31	-46	-61	-75	+1,324	
Net migration	+650	+666	+662	+658	+649	+634	+625	+629	+626	+628	+624	+600	+596	+594	+585	+568	+564	+567	+566	+556	+549	+12,248	
Net change	+789	+810	+799	+782	+779	+757	+738	+734	+725	+721	+707	+670	+651	+633	+606	+570	+549	+536	+520	+496	+474	+13,572	
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	4.686	4.815	4,869	4,918	4,970	5,008	5,014	5,004	4,990	4,980	4,970	4,960	4,951	4,939	4,922	4,898	4,872	4,846	4,822	4,804	4,793		
5-10	5,473	5,497	5,640	5,841	5,920	6,055	6,201	6,337	6,398	6,450	6,503	6,538	6,536	6,519	6,499	6,482	6,464	6,445	6,426	6,404	6,376		
11-15	4,651	4,676	4,655	4.568	4,585	4,596	4,611	4,684	4.864	4,951	5,071	5,187	5,307	5,367	5,427	5,479	5,517	5,521	5,505	5,483	5,466		
16-17	1.863	1.866	1,845	1.867	1,888	1,864	${ }^{1,846}$	1.821	1,756	1.827	1,885	1.871	1,914	2,013	2,085	2,089	2,105	2,147	2,190	2,205	2,202		
18-59Female, 64Male	46,355	46,377	46,426	46,589	46,760	46,931	47,129	47,237	47,338	47,377	47,356	47,399	47,415	47,351	47,324	47,337	47,267	47,233	47,244	${ }^{47,306}$	47,331		
60/65-74	11,996	12,385	12,724	12,919	13,139	13,356	13,518	13,610	13,696	13,795	13,917	13,862	13,865	14,046	14,261	14,519	14,845	15,110	15,385	15,632	15,896		
75.84	5,495	5,607	5,802	5,982	6,123	6,262	6,407	6,700	6,982	7,261	7,548	8,005	8,331	8,567	8,770	8,945	9,095	9,181	9,207	9,232	9,263		
$85+$	2.410	2.498	2.568	2,644	2.725	2.818	2,921	2,992	3,094	3,202	3,315	3,452	3,623	3,791	3,938	4.081	4,238	4,468	4.707	4.940	5,175		
Total	82,930	83,719	84,529	85,328	86,111	86,890	87,647	88,386	${ }^{89,119}$	89,844	90,566	91,272	91,942	92,593	93,226	93,832	94,402	94,951	95,486	96,007	96,502	13,572	
Population impact of constraint																							0
Number of persons	+32	+3	+3	+3	+3	+2	+2	+2	+2	+2	+3	+3	+3	+3	+3	+3	+2	+2	+2	+2	+2		010
Households																							
Number of Households	36,052	36,496	36,929	37,369	37,802	38,251	38,683	39,114	39,529	39,935	40,354	40,739	41,138	41,522	41,901	42,283	42,656	43,004	43,372	43,717	44,052	8,000	
Change over previous year	+446	+444	+433	+439	+433	+449	+432	+432	+415	+405	+419	+385	+399	+384	+379	+382	+373	+349	${ }^{+368}$	+345	+334		N
Number of supply units	37,071	37,528	37,973	38,425	38,870	39,332	39,777	40,220	40,647	41,064	41,495	41,891	42,301	42,996	43,086	43,478	43,862	44,220	44,599	44,954	45,297	8,226	0
Change over previous year	${ }^{+458}$	${ }^{+457}$	$+445$	+452	${ }^{+445}$	${ }^{+462}$	${ }^{+444}$	$+444$	${ }^{+427}$	$+417$	${ }^{+431}$	${ }^{+396}$	$+410$	+395	+390	+392	+384	${ }^{+358}$	+378	${ }^{+355}$	${ }^{+344}$		6
Labour Force																							
Number of Labour Force	42,568	42,709	42,868	43,050	43,222	43,389	43,499	43,596	43,748	43,822	43,877	43,915	43,992	44,053	44,115	44,162	44,195	44,275	44,359	44,466	44,561	1,993	
Change over previous year	+242	+141	+158	+183	+172	+166	+110	+97	+152	+74	+56	+38	+77	+61	+63	+47	+33	+80	+84	+107	+95		
Number of supply units	34,455	34,569	34,734	34,919	35,095	35,267	35,431	35,585	35,783	35,919	36,039	36,146	36,284	36,409	36,536	36,575	36,602	36,669	36,738	36,827	36,906	2,451	
Change over previous year	+232	+114	+165	+185	+176	+172	+164	+154	+199	+136	+121	+106	+138	+125	+127	+39	+27	+66	+70	+89	+79		

Page 300

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel RunslCGT\Cheltenham, Gloucester, Tewkesbury JCS_inplscenario_ONS2010
baseline LOW UNEMP.xls
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM11. POPGROUP v3.1 DF CompatiblelModel RunsICGTICheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_ONS2010 baseline LOW UNEMP.xls	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008

 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTUKONS2010.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 301

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Cons2011-35.xIs workbook, which was last updated on 03/12/2010
Population 2011-2035 taken from ONS sub-national 2010 based projections.
Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 302
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins
N

N

000
へ্~~

N্N ©
N

드N

$\stackrel{\text { © }}{\sim}$

$\stackrel{\leftrightarrow}{\circ}$
$\circ 00$

\circ
000
©
000
-
$\circ \circ 0$
$\circ \circ \circ$
○。
$\circ 00$
000

00
000
$\square 00$
-
\rightarrow
$\circ 00$
000
$000 \quad 000$
000

0	000	
0	0	0

000

$$
0
$$

$$
000
$$

$$
000
$$

0

00	000
00	000

L1OZ

Summary of Population estimates/forecasts
Summary of population change
Natural change
Net migration
Net migration
Net change
Migration - Net Flows
SMigR: females
Migrants input

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+1,347	+1,453	+1,441	+1,412	+1,409	+1,402	+1,377	+1,350	+1,331	+1,311	+1,276	+1,233	+1,183	+1,132	+1,074	+1,016	+966	+923	+884
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+1,347	+1,453	+1,441	+1,412	+1,409	+1,402	+1,377	+1,350	+1,331	+1,311	+1,276	+1,233	+1,183	+1,132	+1,074	+1,016	+966	+923	+884

合 ${ }^{\infty}$
NATURAL CHANGE

©

©
N

N

Components of Population Change
Year beginning July 1
2011
he UK
Births
Male
Female
All Births
TFR
Births input

Deaths
Male
Female
All deaths
SMR: males
SMR: female
SMR: male \&
Expectation
Deaths input
In-migra
Male
Female
SMigR: males
SMigR: females
Migrants input
SMRR: male \& female
Expectation of life
Deaths input

Components of Population Change
๙ัㅇㅇㅇ
$\begin{array}{lr}\text { Al/ Births } & 2.31 \\ \text { TFR } & * \\ \text { Births input } & \\ \text { Deaths } & 491 \\ \text { Male } & 512 \\ \text { Female } & 1,002 \\ \text { All deaths } & 101.1 \\ \text { SMR: males } & 103.1 \\ \text { SMR: females } & 102.1 \\ \text { SMR: male \& female } & 80.7 \\ \text { Expectation of life } & *\end{array}$
In-migration from the UK
Male
Female
All
SMigR
SMigR
Migran
Out-migration to the UK
Male
Female
All
SMigR: males
SMigR: females
In-migration from Overseas
Male
Female
SMigR: males
SMigR: females

[^15]

\％	学龺思离。	
\％		

In－migration from the UK
Male
Female
All
Births
Male
Female
All Births
TFR
Births input

Deaths
Male
Female
All deaths
SMR：males
SMR：females
SMR：male \＆
Expectation o
Deaths input
Female
All
SMigR：
SMigR：
SMigR：males
SMigR：females
Migrants input
Out－migration to the UK
Male
Female
All
SMigR：males
SMigR：females
Migrants input
In－migration from Overseas
Male
Female
All
SMigR：males
SMigR：females
Migrants input

[^16]Tewkesbury

Page 311

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_ONS2010 natural change.xls
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM\1. POPGROUP v3.1 DF Compatible\Model RunslCardifflCGT\Cheltenham, Gloucester, Tewkesbury JCS_out\|FlatComp_ONS2010 natural change.xls	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative
population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
No migration file was specified for In-migration from the UK (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to the UK (optional)
This migration stream was set to zero
No migration file was specified for In-migration from Overseas (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to Overseas (optional)
This migration stream was set to zero
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 312

SMigR: males																					
SMigR: females																					
Migrants input																					
Migration - Net Flows																					
UK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Overseas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Summary of population change																					
Natural change	+1,347	+1,453	+1,441	+1,412	+1,409	+1,402	+1,377	+1,350	+1,331	+1,311	+1,276	+1,233	+1,183	+1,132	+1,074	+1,016	+966	+923	+884	+841	
Net migration	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Net change	+1,347	+1,453	+1,441	+1,412	+1,409	+1,402	+1,377	+1,350	+1,331	+1,311	+1,276	+1,233	+1,183	+1,132	+1,074	+1,016	+966	+923	+884	+841	
Summary of Population estimates/forecasts																					
Population at mid-year																					
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
0-4	19,608	20,058	20,274	20,539	20,753	20,957	20,997	20,932	20,848	20,775	20,705	20,627	20,552	20,471	20,370	20,254	20,132	20,023	19,935	19,875	19,848
5-10	20,577	20,782	21,555	22,088	22,557	23,062	23,729	24,259	24,476	24,723	24,923	25,118	25,134	25,051	24,960	24,876	24,790	24,690	24,591	24,484	24,357
11-15	18,321	17,991	17,412	17,188	17,111	17,103	17,091	17,550	18,131	18,567	19,077	19,587	20,038	20,254	20,519	20,733	20,937	20,977	20,913	20,829	20,757
16-17	7,895	7,765	7,607	7,438	7,226	7,067	6,954	6,698	6,636	6,925	6,982	6,935	7,146	7,676	7,942	7,927	7,956	8,107	8,342	8,423	8,406
18-59Female, 64Male	183,625	183,361	183,278	183,076	183,031	182,876	182,561	182,063	181,398	180,416	179,564	178,711	177,750	176,496	175,405	174,630	173,678	172,930	172,214	171,640	171,131
60/65-74	37,450	38,467	39,270	40,020	40,625	41,202	41,745	42,063	42,559	43,108	43,638	43,663	43,937	44,685	45,652	46,696	47,773	48,733	49,579	50,449	51,273
75-84	18,657	18,796	19,068	19,365	19,569	19,743	20,079	20,749	21,369	21,964	22,594	23,770	24,707	25,422	25,975	26,442	26,884	27,043	27,277	27,490	27,684
$85+$	8,706	8,966	9,176	9,366	9,621	9,892	10,147	10,366	10,613	10,884	11,191	11,536	11,919	12,310	12,673	13,012	13,435	14,050	14,624	15,169	15,744
Total	314,839	316,186	317,639	319,080	320,493	321,902	323,304	324,681	326,031	327,362	328,673	329,949	331,182	332,365	333,496	334,570	335,586	336,552	337,475	338,359	339,200
Households																					
Number of Households	137,841	138,963	140,059	141,098	142,052	143,044	144,091	145,105	146,064	146,982	147,863	148,624	149,396	150,155	150,870	151,615	152,316	153,093	153,831	154,510	155,095
Change over previous year	+1,162	+1,122	+1,096	+1,039	+954	+993	+1,047	+1,014	+958	+918	+881	+761	+772	+760	+714	+745	+702	+777	+738	+679	+585
Number of supply units	143,162	144,330	145,471	146,554	147,548	148,581	149,670	150,725	151,722	152,677	153,593	154,385	155,187	155,977	156,720	157,494	158,223	159,032	159,798	160,504	161,112
Change over previous year	+1,209	+1,167	+1,142	+1,082	+994	+1,033	+1,089	+1,055	+997	+955	+916	+792	+803	+790	+743	+774	+729	+808	+766	+706	+608
Labour Force																					
Change over previous year	+312	+4	-71	-153	-174	-186	-463	-346	-431	-682	-718	-749	-495	-615	-634	-640	-532	-340	-391	-346	-275
Number of supply units	153,606	153,639	153,762	153,809	153,831	153,843	153,707	153,740	153,685	153,399	153,078	152,731	152,623	152,395	152,148	151,829	151,502	151,356	151,021	150,728	150,507
									-55	-287	-321	-347	-108	-228	-248	-319	-326	-146	-335	-293	

Population Estimates and Forecasts
Components of Population Change

In-migration from the UK
Male
Male
Female
All
SMigR: males
SMigR: females
Migrants input
Out-migration to the UK
Male
Female
All
SMigR: males
SMigR: females
Migrants input
In-migration from Overseas
Male
Female
All
SMigR: males
SMigR: females
Migrants input

[^17]

N

읃

$\begin{aligned} & \text { 흥 } \\ & \stackrel{y}{0} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\text { ® }}{ }$		产 $\underbrace{\sim}_{\text {® }}$
	$\stackrel{\circ}{\stackrel{\circ}{N}}$	号馬高	
	$\stackrel{5}{5}$		

Components of Population Change
Year beginning July 1
2011

923
879
1,801
2.31
$*$

491
512
1,002
101.1
103.1
102.1
80.7
\star
In－migration from the UK
SMR：male \＆female
Expectation of life
Deaths input
In－migration from the UK
Male
Female
All
SMigR：males
SMigR：females
Migrants input
Out－migration to the UK
Male
Female
All
SMigR：males
SMigR：females
Migrants input
In－migration from Overseas
Male
Female
All
SMigR：males
SMigR：females
Migrants input

[^18]| Migration - Net Flows UK | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | |
| :---: |
| Overseas | - | - | - | 0 | - | - | - | 0 | 0 | - | - | 。 | - | 0 | 0 | - | - | - | 0 | 0 | | |
| Summary of population | |
| Natural change | +799 | +687 | +861 | 850 | +800 | +682 | +853 | 39 | 332 | +824 | +809 | +790 | +769 | +799 | +726 | +704 | +687 | 475 | +665 | +653 | | |
| Net migration | 0 | \bigcirc | \bigcirc | | 0 | 0 | 0 | 0 | | 0 | | 0 | 0 | \bigcirc | \bigcirc | | | \bigcirc | | 0 | | |
| Net change | 99 | 867 | +861 | +850 | 880 | 862 | +853 | 39 | ${ }^{832}$ | 824 | 809 | +790 | +769 | +79 | +726 | +704 | +687 | +675 | +665 | +653 | | |
| Summary of Population estimates/forecasts | |
| Population at mid-year | |
| | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | |
| ${ }^{0.4}$ | 8,461 | 8,998 | 8.800 | ${ }^{8,934}$ | 9,044 | 9,165 | 9,211 | 9,195 | 9,171 | ${ }^{9,146}$ | 9,117 | 9,079 | 9.037 | ${ }^{8.993}$ | ${ }^{8.940}$ | ${ }^{8,888}$ | ${ }^{8.821}$ | ${ }^{8,770}$ | ${ }^{8.733}$ | ${ }^{8.712}$ | 8,709 | |
| 5.10 | 8,933 | 8.008 | 9,073 | 9,369 | 9,677 | 9,933 | 10,247 | ${ }^{10.536}$ | ${ }^{10,637}$ | ${ }^{10,768}$ | ${ }^{10,875}$ | 10,996 | ${ }^{11,034}$ | ${ }^{11,009}$ | ${ }^{10,981}$ | ${ }^{10,950}$ | 10.912 | 10,862 | ${ }^{10,807}$ | 10,750 | 10,684 | |
| 11-15 | 7.141 | 7.039 | ${ }_{6}^{6,389}$ | ${ }_{6}^{6,389}$ | ${ }^{6.813}$ | 6,913 | 7.049 | ${ }^{7}, 327$ | ${ }^{7.658}$ | 7.944 | 8.213 | 8.452 | 8.688 | ${ }^{8,790}$ | ${ }^{8.925}$ | ${ }^{9.035}$ | 9,155 | 9,202 | 9,186 | 9,163 | 9,138 | |
| 16.17 | ${ }^{2.926}$ | 2.875 | 2.918 | 2.887 | 2.858 | 2.808 | 2.701 | 2.617 | 2.887 | 2.832 | 2.882 | ${ }^{2.937}$ | 3.030 | ${ }_{3}^{3,296}$ | 3.449 | ${ }_{3}^{3,437}$ | 3.445 | 3.506 | 3,634 | 3.885 | 3.881 | |
| 18.59Female, 6 4Male | 70.525 | 70.545 | 70.573 | 70.591 | 70,682 | ${ }^{70,736}$ | 70,756 | ${ }^{70.20}$ | 70,366 | 70,038 | ${ }^{69,868}$ | ${ }^{69,672}$ | 69,432 | ${ }^{69,89}$ | ${ }^{68,799}$ | ${ }^{68,598}$ | 68,396 | 68,319 | 68,185 | 68,099 | 68,144 | |
| 60165-74 | 12,876 | 13,048 | 13,330 | 13,668 | 13,948 | 14,207 | 14,442 | 14,653 | 14,953 | 15,293 | 15.594 | 15,900 | ${ }^{15,922}$ | 1,3,31 | 16,802 | 17,393 | 17,954 | 18,430 | ${ }^{18,892}$ | 19,349 | 19,710 | |
| 75.84 | 6,248 | 6,288 | ${ }_{6,344}$ | 6,368 | ${ }_{6} 6.405$ | 6.425 | 6,568 | ${ }_{6}^{6,97}$ | 6,989 | 7,209 | 7.408 | ${ }^{\text {7,830 }}$ | 8,176 | 8,500 | 8.74 | 8.957 | 9,106 | ${ }^{9,163}$ | 9,281 | 9,420 | 9,568 | |
| $85+$ | 2.614 | 2.684 | 2.774 | 2.856 | 2.935 | 3.036 | 3.111 | 3.193 | 3.295 | 3.378 | 3.475 | 3.566 | 3.712 | 3.814 | 3.923 | 4.027 | 4.191 | 4.417 | 4.626 | 4.831 | 5.027 | |
| Total | 118,985 | 119,784 | 120.651 | ${ }^{121,512}$ | 122,362 | 123,222 | ${ }^{124,044}$ | 1 124,97 | 125,76 | ${ }^{126,608}$ | ${ }^{127,433}$ | 128,242 | 129,032 | 129,801 | 130,51 | 131,277 | 13,981 | 132,69 | 133,34 | 134,009 | ${ }^{134,662}$ | 15.67 |
| Households | |
| Number of Housenolds | 51,247 | ${ }^{51,756}$ | ${ }^{52276}$ | ${ }^{52749}$ | 53,194 | ${ }^{53,666}$ | ${ }^{54,136}$ | ${ }^{54,595}$ | ${ }^{55,045}$ | ${ }^{55,452}$ | 55.872 | 56,269 | 56,678 | 57,106 | 57.59 | 57,08 | 58,303 | 58,764 | 59,200 | 59,631 | 60,044 | 8,97 |
| Change over revious year | +532 | +510 | +520 | +473 | +445 | +472 | +470 | +459 | +450 | +407 | +220 | +398 | +409 | +428 | +403 | +398 | +395 | +461 | +437 | ${ }^{4311}$ | +412 | |
| Number of supply units | 53,105 | 55,634 | 54,172 | 54,662 | 55,123 | 55,612 | 56,099 | ${ }^{56,575}$ | 57,041 | 57,463 | 57,998 | 58,310 | 58,733 | 59.17 | ${ }^{59.595}$ | 60,008 | ${ }^{60,417}$ | ${ }^{60,895}$ | 61,348 | 61,794 | 62.21 | 9.116 |
| Change over revious year | +551 | +528 | +539 | +490 | ${ }_{+461}$ | +489 | +487 | +476 | +466 | +422 | ${ }_{\text {+435 }}$ | +412 | +223 | +444 | +418 | +413 | +409 | +478 | +453 | +447 | ${ }_{+427}$ | |
| Labour ForceNumber oftabur Force | |
| |
| Change over previous year | +228 | +103 | +54 | +42 | -18 | | -73 | -18 | | -169 | -175 | -167 | -31 | -115 | ${ }^{-126}$ | -119 | 44 | +45 | | +34 | +77 | |
| Number of supply units | | | | | | 64,730 | | | | | | | | | | | | | | | 65,424 | 1.156 |
| Change overprevious year | $+847$ | +103 | +124 | +111 | +52 | +72 | +65 | +120 | +72 | ${ }^{33}$ | 40 | ${ }_{-32}$ | +105 | +20 | | +15 | $+91$ | +183 | +5 | t35 | +79 | |

芯 冒等点 N

Tewkesbury

Components of Population Change

	$\begin{array}{c}\text { Year beginning July 1st } \\ 2011\end{array}$
Births	
Male	471
Female	449
All Births	920
TFR	2.10
Births input	\multirow{2}＊{}
Deaths	
Male	382
Female	400
All deaths	782
SMR：males	91.3
SMR：females	89.1
SMR：male \＆female	90.1
Expectation of life	81.7
Deaths input	$*$

In－migration from the UK
Male
Female
Female
All
SMigR：
SMigR：
SMigR：males
SMigR：females
Migrants input
Out－migration to the UK
Male
Female
All
SMigR：males
SMigR：females
In－migration from Overseas
Male
Female
All
SMigR：males
SMigR：females
Migrants input

[^19]

Page 321

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
Compatible\Model Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_ONS2010 natural change LOW UNEMP.xls
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		
	G:IHEaDROOM11. POPGROUP v3.1 DF	
	Compatible\Model Runs\CardifflCGT\Cheltenham,	<< Save flat file with this name (may
	Gloucester, Tewkesbury JCS_out\|FlatComp_ONS2010 natural change LOW UNEMP.xls	be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative
population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
No migration file was specified for In-migration from the UK (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to the UK (optional)
This migration stream was set to zero
No migration file was specified for In-migration from Overseas (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to Overseas (optional)
This migration stream was set to zero
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 322

Population Estim	nd F	eca					M	STIC	MIGR	TIO										
Components of Pop	Cha					het,	ouc,	ewke												
	ing July																			
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	2,128	2,169	2,169	2,160	2,153	2,148	2,135	2,125	2,122	2,116	2,107	2,096	2,083	2,069	2,055	2,044	2,039	2,037	2,038	2,041
Female	2,027	2,066	2,066	2,057	2,050	2,045	2,033	2,024	2,021	2,015	2,007	1,996	1,984	1,971	1,958	1,947	1,942	1,940	1,941	1,944
All Births	4,155	4,235	4,235	4,217	4,203	4,193	4,168	4,149	4,142	4,131	4,114	4,091	4,066	4,040	4,013	3,991	3,980	3,978	3,979	3,985
TFR	2.11	2.14	2.13	2.11	2.10	2.08	2.06	2.05	2.04	2.04	2.03	2.02	2.02	2.01	2.00	1.99	1.99	1.99	1.99	2.00
Births input																				
Deaths																				
Male	1,345	1,330	1,349	1,361	1,355	1,362	1,368	1,379	1,391	1,400	1,415	1,428	1,447	1,464	1,484	1,505	1,528	1,551	1,572	1,597
Female	1,464	1,451	1,446	1,444	1,438	1,429	1,424	1,421	1,420	1,419	1,423	1,430	1,437	1,445	1,455	1,471	1,486	1,504	1,523	1,547
All deaths	2,809	2,781	2,794	2,805	2,793	2,791	2,791	2,800	2,811	2,820	2,838	2,858	2,884	2,908	2,939	2,975	3,014	3,055	3,095	3,144
SMR: males	93.3	89.9	88.6	87.0	84.4	82.5	80.6	79.0	77.5	75.8	74.3	72.9	71.7	70.4	69.2	68.1	67.1	66.2	65.2	64.4
SMR: females	93.7	91.2	89.3	87.6	85.8	83.8	82.1	80.4	78.8	77.2	75.7	74.3	73.0	71.6	70.3	69.2	68.1	67.0	66.0	65.2
SMR: male \& female	93.5	90.5	89.0	87.3	85.1	83.2	81.3	79.7	78.2	76.5	75.0	73.6	72.3	71.0	69.7	68.6	67.6	66.6	65.6	64.8
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	9,051	9,104	9,154	9,196	9,232	9,257	9,269	9,276	9,275	9,274	9,288	9,307	9,327	9,354	9,396	9,442	9,482	9,528	9,580	9,636
Female	9,855	9,896	9,932	9,961	9,993	10,007	10,008	10,004	9,989	9,977	9,986	10,009	10,032	10,063	10,116	10,179	10,233	10,298	10,370	10,444
All	18,905	19,000	19,086	19,156	19,225	19,264	19,277	19,280	19,264	19,251	19,273	19,316	19,359	19,417	19,512	19,621	19,715	19,826	19,949	20,080
SMigR: males	53.8	53.8	53.7	53.7	53.7	53.7	53.6	53.6	53.5	53.5	53.5	53.5	53.6	53.6	53.6	53.6	53.6	53.5	53.5	53.5
SMigR: females	58.2	58.1	58.0	58.0	58.1	58.2	58.2	58.2	58.1	58.1	58.1	58.2	58.3	58.3	58.3	58.3	58.2	58.2	58.2	58.2
Migrants input																				
Out-migration to the UK																				
Male	8,518	8,577	8,656	8,708	8,743	8,784	8,805	8,816	8,826	8,822	8,833	8,856	8,869	8,890	8,931	8,974	9,016	9,055	9,104	9,163
Female	9,343	9,435	9,516	9,552	9,591	9,597	9,599	9,599	9,594	9,568	9,579	9,587	9,590	9,607	9,665	9,743	9,797	9,870	9,942	10,019
All	17,861	18,011	18,171	18,260	18,334	18,381	18,405	18,415	18,420	18,391	18,412	18,443	18,459	18,497	18,596	18,717	18,814	18,925	19,047	19,182
SMigR: males	50.6	50.7	50.8	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	51.0	51.0	50.9	50.9	50.9	50.8
SMigR: females	55.1	55.3	55.6	55.6	55.8	55.8	55.8	55.8	55.8	55.7	55.8	55.8	55.7	55.7	55.7	55.8	55.7	55.8	55.8	55.8
Migrants input																				
In-migration from Overseas																				
Male	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
All	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0
SMigR: males																				
SMigR: females																				
Migrants input																				
Out-migration to Overseas																				
Male	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
All	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SMigR：males
SMigR：females

Summary of Population estimates／forecasts

Summary of population change

Net migration

$+1,045$
0

$+1,347$
$+1,45$
$+2,391$

Net change
Natural change
Net migration
Net change
2011
둥

315，996	318，387	320，828	323，184	325，493	327，793	330，078	332，328	334，542	336，717	338，889	341，026	343，132	345，215	347，266	349，256	351，176	353，043	354，867	356，653	358，392
138，200	139，669	141，103	142，501	143，820	145，222	146，691	148，120	149，498	150，840	152，163	153，391	154，654	155，930	157，160	158，437	159，659	160，983	162，276	163，52	164，674
＋1，521	＋1，469	＋1，434	＋1，398	＋1，319	＋1，402	＋1，468	＋1，429	＋1，378	＋1，342	＋1，323	＋1，228	＋1，263	＋1，276	＋1，230	＋1，277	＋1，222	＋1，324	＋1，293	＋1，247	＋1，152
143，533	145，057	146，545	147，995	149，363	150，817	152，341	153，825	155，255	156，648	158，021	159，296	160，607	161，931	163，207	164，532	165，801	167，177	168，519	169，814	171，010
＋1，579	＋1，524	＋1，488	＋1，450	＋1，368	＋1，454	＋1，524	＋1，483	＋1，430	＋1，393	＋1，373	＋1，275	＋1，311	＋1，324	＋1，276	＋1，325	＋1，269	＋1，376	＋1，343	＋1，295	＋1，196
169，681	170，346	170，888	171，314	171，720	172，132	172，281	172，556	172，745	172，681	172，596	172，467	172，643	172，886	172，724	172，743	172，865	173，187	173，438	173，738	174，090
＋973	＋665	＋542	＋426	＋406	＋412	＋149	＋275	＋189	－64	－85	－129	＋176	＋43	＋38	＋19	＋122	＋321	＋251	＋301	＋352
154，200	154，830	155，509	156，082	156，630	157，187	157，505	157，943	158，292	158，409	158，507	158，567	158，911	159，029	159，068	159，091	159，217	159，524	159，762	160，044	160，378

O．

这
茴釉

No

ㅊNN．
さ
骨

N
菖皆

えَ
弟
$\stackrel{\circ}{0.0}$

合梁

Noc：
帯毫

発等

见
$\stackrel{7}{\square}$

$2011 \quad 2012 \quad 2013$

7,930	7,830	7,745
184,366	184,759	185,293
189		

$\begin{array}{rrr}184,366 & 184,759 & 185,293 \\ 37,550 & 38,666 & 39,571 \\ 18,691 & 18,774 & 19,196\end{array}$

$8,6,699$	8,931	9,123
315,996	318,387	320,828

This report was compiled from a forecast produced on 18／05／2012 using POPGROUP software developed by Bradford Council，the University of Manchester and Andelin Associates

Components of Population Change	
	Year beginning July 1st
	2011
Births	
Male	734
Female	699
All Biths	1,434
TFR	1.99
Births input	
Deaths	
Male	472
Female	552
All deaths	1,024
SMR: males	88.1
SMR: females	89.5
SMR: male \& female	88.9
Expectation of life	81.9
Deaths input	
In-migration from the UK	
Male	3,674
Female	4,104
All	7,778
SMigR: males	57.8
SMigR: females	63.8
Migrants input	
Out-migration to the UK	
Male	3,548
Female	4,044
All	7,592
SMigR: males	55.8
SMigR: females	62.9
Migrants input	

[^20]| Migration - Net Flows | |
| :---: |
| UK | +186 | +142 | +91 | +91 | +109 | +130 | +148 | +152 | +153 | +181 | +199 | +242 | +279 | +307 | +321 | +341 | +350 | +351 | +357 | +366 | | | |
| Overseas | 0 | 0 | 0 | - | 0 | 0 | 0 | , | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | |
| Summary of population | |
| Natural change | +409 | +442 | +443 | +438 | +419 | +416 | +411 | +405 | +400 | +394 | +384 | +373 | +359 | +344 | +327 | +309 | +294 | +279 | +265 | +249 | | | |
| Net migration | +186 | +142 | +91 | +91 | +109 | +130 | +148 | +152 | +153 | +181 | +199 | +242 | +279 | +307 | +321 | +341 | +350 | +351 | +357 | +366 | | | |
| Net change | +595 | +585 | +534 | +529 | +528 | +547 | +559 | +558 | +553 | +575 | +583 | +615 | +638 | +651 | +648 | +650 | +644 | +629 | +622 | +615 | | | |
| Summary of Pop | timate | /forec | asts | |
| | at mid-y | |
| | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | | |
| 0-4 | 6,515 | 6,642 | 6,724 | 6,820 | 6,876 | 6,921 | 6,910 | 6,870 | 6,824 | 6,783 | 6,751 | 6,720 | 6,694 | 6,667 | 6,634 | 6,599 | 6,562 | 6,528 | 6,501 | 6,480 | 6,468 | | |
| 5-10 | 6,792 | 6,828 | 7,078 | 7,176 | 7,340 | 7.517 | 7.775 | 7,913 | 7,989 | 8,074 | 8,117 | 8,159 | 8,141 | 8,098 | 8,052 | 8,010 | 7,975 | 7,939 | 7,907 | 7,873 | 7,835 | | |
| 11-15 | 6,666 | 6,557 | 6,294 | 6,257 | 6,257 | 6,210 | 6,110 | 6,318 | 6,434 | ${ }_{6} 6.578$ | 6,770 | 6,993 | 7,117 | 7,191 | 7,290 | 7.350 | 7,405 | 7,397 | 7,359 | 7,313 | 7,273 | | |
| 16-17 | 3,131 | 3,070 | 2,949 | 2,860 | 2,694 | 2,653 | 2,717 | 2,576 | 2,561 | 2,675 | 2,619 | 2,568 | 2,685 | 2,912 | 2,963 | 2,970 | 2,993 | 3,043 | 3,120 | 3,141 | 3,133 | | |
| 18-59Female, 64Male | 67,250 | 67,381 | 67,644 | 67,636 | 67,748 | 67.817 | 67,734 | 67,747 | 67,717 | 67,520 | 67,448 | 67,314 | 67,160 | 66,943 | 66,835 | 66,915 | 66,931 | 66,989 | 67,051 | 67,144 | 67,254 | | |
| 60/65-74 | 12,880 | 13,230 | 13,501 | 13,808 | 13,997 | 14,174 | 14,395 | 14,476 | 14,653 | 14,829 | 14,980 | 14,977 | 15,050 | 15,253 | 15,573 | 15,839 | 16,075 | 16,389 | 16,605 | 16,909 | 17,215 | | |
| 75.84 | 6,952 | 6,981 | 7,046 | 7,188 | 7,268 | 7.338 | 7,452 | 7,668 | 7.892 | 8,064 | 8,292 | ${ }_{8,698}$ | 9,083 | 9,344 | 9,551 | 9,721 | 9,940 | 9,995 | 10,151 | 10,257 | 10,303 | | |
| $85+$ | 3.669 | 3,761 | 3.800 | 3.824 | 3.917 | 3,996 | 4.079 | 4.163 | 4.218 | 4.318 | 4.440 | 4.570 | 4.684 | 4.845 | 5.005 | 5.147 | 5,320 | 5.563 | 5,780 | 5.978 | 6,230 | | |
| Total | 113,855 | 114,450 | 115,035 | 115,569 | 116,098 | 116,626 | 117,172 | 117,731 | 118,289 | 118,842 | 119,417 | 120,000 | 120,615 | 121,252 | 121,903 | 122,551 | 123,201 | 123,845 | 124,474 | 125,096 | 125,710 | 11,855 | |
| Households | טి |
| Number of Households | 50,837 | 51,289 | 51,715 | 52,115 | 52,475 | 52,843 | 53,325 | 53,779 | 54,208 | 54,656 | 55,065 | 55,442 | 55,836 | 56,215 | 56,600 | 57,023 | 57,428 | 57,913 | 58,353 | 58,789 | 59,169 | 8,332 | (1) |
| Change over previous year | +479 | +452 | +426 | +399 | +360 | +368 | +481 | +454 | +429 | +447 | +409 | ${ }^{+377}$ | +394 | +379 | +385 | +423 | +405 | +485 | +440 | +436 | +381 | | |
| Number of supply units | 53,289 | 53,762 | 54,209 | 54,627 | 55,005 | 55,391 | 55,896 | 56,372 | 56,822 | 57,291 | 57,720 | 58,115 | 58,528 | 58,925 | 59,329 | 59,773 | 60,197 | 60,706 | 61,166 | ${ }^{61,623}$ | 62,022 | 8,734 | |
| Change over previous year | +502 | +473 | +447 | +419 | +378 | +386 | +505 | +476 | +450 | +469 | +429 | +395 | +413 | +397 | +404 | +443 | +425 | +509 | +461 | +457 | +399 | | N |
| Labour Force | |
| Number of Labour Force | 62,658 | 62,889 | 63,041 | 63,068 | 63,152 | 63,225 | 63,173 | 63,235 | 63,184 | 63,080 | 62,998 | 62,910 | 62,956 | 62,960 | 62,981 | 63,02 | 63,114 | 63,281 | 63,418 | 63,549 | 63,740 | 1,083 | |
| Change over previous year | +317 | +232 | +152 | +27 | +84 | +73 | -52 | +62 | -51 | -104 | -82 | -87 | +46 | +4 | +21 | +21 | +112 | +167 | +138 | +130 | +192 | | |
| Number of supply units | 55,269 | 55,473 | 55,666 | 55,750 | 55,883 | 56,008 | 56,021 | 56,136 | 56,151 | 56,117 | 56,104 | 56,085 | 56,185 | 56,189 | 56,208 | 56,226 | 56,326 | 56,475 | 56,598 | 56,714 | 56,885 | 1,617 | |
| Change over previous year | +691 | +204 | +193 | +83 | +134 | +125 | +14 | +115 | +14 | -33 | -14 | -19 | +100 | +4 | +18 | +19 | +100 | +149 | +123 | +116 | +171 | | |

Components of Population Change
$\begin{array}{lr} & \text { Year beginning July } \\ \text { Births } & 2011\end{array}$
Births
Male
Female
All Births
TFR
Births inpu
Deaths

In-migration from Overseas
Male
Female
All
SMigR: males
SMigR: females
Migrants input
Out-migration to Overseas
Male
Female
SMigR: males
SMigR: females
Migrants input

Migration - Net Flows																							
UK	+315	+284	+261	+244	+223	+203	+183	+168	+149	+137	+123	+116	+110	+103	+95	+79	+72	+68	+64	+60			
Overseas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Summary of population																							
Natural change	+799	+867	+861	+850	+860	+862	+853	+839	+832	+824	+809	+790	+769	+749	+726	+704	+687	+675	+665	+653			
Net migration	+315	+284	+261	+244	+223	+203	+183	+168	+149	+137	+123	+116	+110	+103	+95	+79	+72	+68	+64	+60			
Net change	+1,114	+1,151	+1,123	+1,094	+1,084	+1,066	+1,036	+1,008	+982	+961	+933	+906	+879	+852	+821	+784	+760	+743	+729	+713			
Summary of Popu	mate	/forec	asts																				
	at mid-y																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	8,441	8,653	8,732	8,850	8,945	9,056	9,094	9,073	9,046	9,018	8,988	8,950	8,910	8,867	8,816	8,759	8,702	8,653	8,617	8,596	8,592		
5-10	8,394	8,603	9,050	9,317	9,588	9,800	10,073	10,319	10,386	10,491	10,574	10,677	10,700	10,667	10,634	10,600	10,562	10,514	10,464	10,412	10,352		
11-15	7,157	7,069	6,873	6,874	6,851	6,946	7,065	7,321	7,614	7,855	8,077	8,272	8,464	8,530	8,635	8,719	8,820	8,850	8,825	8,794	8,765		
16-17	2,941	2,894	2,952	2,935	2,903	2,851	2,745	2,660	2,728	2,870	2,911	2,948	3,023	3,268	3,397	3,367	3,359	3,405	3,520	3,563	3,553		
18-59Female, 64Male	70,880	71,232	71,570	71,879	72,264	72,595	72,878	72,998	73,017	72,908	72,974	72,999	72,973	72,830	72,727	72,723	72,685	72,753	72,746	72,762	72,888		
60/65-74	12,675	13,046	13,328	13,670	13,952	14,218	14,459	14,668	14,958	15,285	15,564	15,640	15,846	16,200	16,650	17,186	17,690	18,112	18,523	18,950	19,297		
75-84	6,245	6,289	6,350	6,381	6,428	6,460	6,614	6,852	7,054	7,280	7,485	7,908	8,258	8,587	8,829	9,046	9,198	9,258	9,379	9,517	9,659		
85+	2,608	2,671	2,752	2,823	2,891	2,981	3,045	3,117	3,213	3,290	3,384	3,496	3,623	3,727	3,841	3,948	4,118	4,347	4,561	4,771	4,972		
Total	119,342	120,456	121,607	122,730	123,823	124,907	125,972	127,008	128,016	128,997	129,958	130,891	131,797	132,676	133,529	134,350	135,133	135,893	136,636	137,365	138,078	18,736	
Households	19,342	120,456		122,30	12,823	124,07	12,972	127,00	12,010	120,97	12,	-30,89	-1,97						-30,60	-37,305			
Number of Households	51,359	51,976	52,602	53,188	53,743	54,347	54,960	55,560	56,150	56,690	57,239	57,767	58,296	58,841	59,354	59,861	60,355	60,916	61,447	61,964	62,450	11,090	(1)
Change over previous year	+645	+617	+626	+585	+556	+603	+614	+600	+590	+540	+548	+528	+529	+546	+513	+507	+494	+561	+530	+517	+486		
Number of supply units	53,222	53,861	54,510	55,117	55,693	56,318	56,954	57,575	58,187	58,747	59,315	59,862	60,410	60,976	61,507	62,032	62,545	63,126	63,675	64,211	64,715	11,492	N
Change over previous year	+668	+639	+649	+606	+576	+625	+636	+621	+612	+560	+568	+547	+548	+565	+531	+525	+512	+581	+550	+536	+504		
Labour Force																							
Number of Labour Force	64,566	64,960	65,293	65,601	65,843	66,101	66,275	66,494	66,656	66,701	66,728	66,750	66,899	66,954	66,988	67,018	67,108	67,275	67,390	67,523	67,689	3,123	
Change over previous year	+525	+394	+333	+308	+242	+258	+174	+220	+161	+45	+28	+22	+149	+55	+34	+29	+90	+167	+115	+132	+166		
Number of supply units	64,566	64,960	65,363	65,742	66,055	66,385	66,631	66,923	67,157	67,275	67,374	67,468	67,691	67,818	67,853	67,883	67,974	68,143	68,260	68,394	68,562	3,997	
Change over previous year	+1,145	+394	+403	+379	+313	+330	+246	+292	+234	+117	+100	+94	+223	+128	+34	+30	+91	+170	+117	+134	+169		

Components of Population Change Tewkesbury																				
Year beginning July 1 st .																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	471	475	476	474	475	474	472	471	472	472	471	469	467	465	461	459	457	456	456	455
Female	449	453	453	451	452	451	450	449	449	449	448	447	445	442	439	437	435	434	434	434
All Biths	920	928	929	925	927	926	922	920	921	921	919	916	912	907	901	896	892	890	889	889
TFR	2.08	2.09	2.09	2.07	2.06	2.05	2.03	2.02	2.01	2.01	2.00	2.00	1.99	1.99	1.99	1.98	1.98	1.99	1.99	1.99
Births input	*	*	*	*				*	*				*		*					
Deaths																				
Male	382	385	391	392	393	397	402	407	412	417	423	430	437	444	451	459	468	476	483	490
Female	400	399	402	408	405	405	406	408	410	411	414	417	421	424	429	434	440	446	452	459
All deaths	782	784	793	800	797	802	808	815	822	828	837	847	858	868	880	893	908	922	935	950
SMR: males	91.0	88.9	87.5	85.3	82.6	81.1	79.5	78.0	76.5	74.9	${ }^{73.5}$	72.4	71.2	70.2	69.0	68.1	67.3	66.5	65.6	64.7
SMR: females	88.9	86.2	84.8	83.9	81.2	79.5	77.9	76.3	74.8	73.2	71.8	70.3	69.1	67.7	${ }_{66.6}$	65.4	64.3	63.1	62.0	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	81.9	80.3	78.7	77.2	75.6	74.0	${ }^{72.6}$	71.3	70.2	68.9	67.8	66.8	65.8	64.8	63.8	63.0
Expectation of life	81.7	81.9	82.0	82.1	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.3	83.4	83.5	83.6	83.7	83.8	83.9	83.9	84.0
Deaths input		*					*		*		*		*							
In-migration from the UK																				
Male	2,416	2,435	2,455	2,470	2,484	2,498	2,508	2,518	2,527	2,535	2,542	2,548	2,554	2,562	2.571	2,579	2,589	2,599	2,609	2,620
Female	2,704	2,722	2,738	2,750	2,762	2,770	2,776	2,783	2,787	2,791	2,794	2,798	2,803	2,810	2,821	2,833	2,846	2,861	2,877	2,892
All	5,120	5,157	5,193	5,220	5,246	5,268	5,284	5,301	5,315	5,326	5,336	5,346	5,357	5,372	5,392	5,413	5,435	5,460	5,486	5,512
SMigR: males	61.7	62.0	62.3	62.6	62.7	62.8	62.9	63.0	63.1	63.2	63.3	63.3	63.2	63.2	63.3	63.2	63.1	63.1	63.1	63.0
SMigR: females	68.1	68.3	68.5	68.6	68.8	68.7	68.7	68.7	68.7	68.6	68.5	68.4	68.4	68.4	68.3	68.2	68.1	68.1	68.0	67.9
Migrants input	.	-	*	*	.	*	*	-	*	.	.	*	.	*	*	*	.		*	
Out-migration to the UK																				
Male	2,171	2,175	2,191	2,204	2,220	2,238	2,248	2,257	2,266	2,269	2,272	2,291	2,302	2,312	2,323	2,336	2,349	2,356	2,367	2,383
Female	2,405	2,420	2,439	2,455	2,467	2,480	2,496	2,500	2,508	2,513	2,525	2,539	2,544	2,551	2,568	2,593	2,607	2,622	2,638	2,657
All	4,576	4,595	4,630	4,659	4,687	4,718	4,744	4,757	4,774	4,783	4,997	4,830	4,846	4,863	4,892	4,929	4,955	4,978	5,005	5,040
SMigR: males	55.4	55.4	55.6	55.8	56.0	56.3	56.4	56.5	56.6	56.6	56.6	56.9	57.0	57.1	57.2	57.3	57.3	57.2	57.2	57.3
SMigR: females	60.6	60.8	61.0	61.3	61.4	61.6	61.7	61.7	61.8	61.8	61.9	62.1	62.1	62.1	62.2	62.4	62.4	62.4	62.4	62.4
Migrants input	*	*			,	,	.			*				221		.				

Components of Population Change Tewkesbury																				
Year beginning July 1 st .																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	471	475	476	474	475	474	472	471	472	472	471	469	467	465	461	459	457	456	456	455
Female	449	453	453	451	452	451	450	449	449	449	448	447	445	442	439	437	435	434	434	434
All Biths	920	928	929	925	927	926	922	920	921	921	919	916	912	907	901	896	892	890	889	889
TFR	2.08	2.09	2.09	2.07	2.06	2.05	2.03	2.02	2.01	2.01	2.00	2.00	1.99	1.99	1.99	1.98	1.98	1.99	1.99	1.99
Births input	*	*	*	*				*	*				*		*					
Deaths																				
Male	382	385	391	392	393	397	402	407	412	417	423	430	437	444	451	459	468	476	483	490
Female	400	399	402	408	405	405	406	408	410	411	414	417	421	424	429	434	440	446	452	459
All deaths	782	784	793	800	797	802	808	815	822	828	837	847	858	868	880	893	908	922	935	950
SMR: males	91.0	88.9	87.5	85.3	82.6	81.1	79.5	78.0	76.5	74.9	${ }^{73.5}$	72.4	71.2	70.2	69.0	68.1	67.3	66.5	65.6	64.7
SMR: females	88.9	86.2	84.8	83.9	81.2	79.5	77.9	76.3	74.8	73.2	71.8	70.3	69.1	67.7	${ }_{66.6}$	65.4	64.3	63.1	62.0	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	81.9	80.3	78.7	77.2	75.6	74.0	${ }^{72.6}$	71.3	70.2	68.9	67.8	66.8	65.8	64.8	63.8	63.0
Expectation of life	81.7	81.9	82.0	82.1	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.3	83.4	83.5	83.6	83.7	83.8	83.9	83.9	84.0
Deaths input		*					*		*		*		*							
In-migration from the UK																				
Male	2,416	2,435	2,455	2,470	2,484	2,498	2,508	2,518	2,527	2,535	2,542	2,548	2,554	2,562	2.571	2,579	2,589	2,599	2,609	2,620
Female	2,704	2,722	2,738	2,750	2,762	2,770	2,776	2,783	2,787	2,791	2,794	2,798	2,803	2,810	2,821	2,833	2,846	2,861	2,877	2,892
All	5,120	5,157	5,193	5,220	5,246	5,268	5,284	5,301	5,315	5,326	5,336	5,346	5,357	5,372	5,392	5,413	5,435	5,460	5,486	5,512
SMigR: males	61.7	62.0	62.3	62.6	62.7	62.8	62.9	63.0	63.1	63.2	63.3	63.3	63.2	63.2	63.3	63.2	63.1	63.1	63.1	63.0
SMigR: females	68.1	68.3	68.5	68.6	68.8	68.7	68.7	68.7	68.7	68.6	68.5	68.4	68.4	68.4	68.3	68.2	68.1	68.1	68.0	67.9
Migrants input	.	-	*	*	.	*	*	-	*	.	.	*	.	*	*	*	.		*	
Out-migration to the UK																				
Male	2,171	2,175	2,191	2,204	2,220	2,238	2,248	2,257	2,266	2,269	2,272	2,291	2,302	2,312	2,323	2,336	2,349	2,356	2,367	2,383
Female	2,405	2,420	2,439	2,455	2,467	2,480	2,496	2,500	2,508	2,513	2,525	2,539	2,544	2,551	2,568	2,593	2,607	2,622	2,638	2,657
All	4,576	4,595	4,630	4,659	4,687	4,718	4,744	4,757	4,774	4,783	4,997	4,830	4,846	4,863	4,892	4,929	4,955	4,978	5,005	5,040
SMigR: males	55.4	55.4	55.6	55.8	56.0	56.3	56.4	56.5	56.6	56.6	56.6	56.9	57.0	57.1	57.2	57.3	57.3	57.2	57.2	57.3
SMigR: females	60.6	60.8	61.0	61.3	61.4	61.6	61.7	61.7	61.8	61.8	61.9	62.1	62.1	62.1	62.2	62.4	62.4	62.4	62.4	62.4
Migrants input	*	*			,	,	.			*				221		.				

In-migration from Overseas
Male
Female
All
SMigR: males
SMigR: females
Migrants input
Out-migration to Overseas
Male
Female
Male
Female
SMigR: males
SMigR: females
Migrants input

Migration - Net Flows																							
UK	+544	+562	+562	+561	+559	+549	+541	+544	+541	+543	+539	+515	+511	+509	+500	+483	+480	+482	+481	+472			
Overseas	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Summary of population change																							
Natural change	+138	+144	+137	+125	+130	+123	+113	+105	+99	+93	+82	+70	+55	+39	+21	+2	-15	-31	-46	-61			
Net migration	+544	+562	+562	+561	+559	+549	+541	+544	+541	+543	+539	+515	+511	+509	+500	+483	+480	+482	+481	+472			
Net change	+682	+706	+699	+686	+689	+673	+654	+649	$+640$	+636	+622	+585	+566	+548	+521	+485	+464	+451	+436	+411			
Summary of Population estimates/forecasts																							
Population at mid-year																							
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	4,679	4,807	4,860	4,901	4,957	4,993	4,998	4,989	4,976	4,968	4,957	4,947	4,938	4,927	4,909	4,886	4,859	4,833	4,809	4,791	4,779		
5-10	5,474	5,494	5,626	5,841	5,903	6,037	6,174	6,316	6,375	6,414	6,474	6,506	6,504	6,487	6,468	6,454	6,436	6,416	6,398	6,377	6,349		
11-15	4,651	4,675	4,664	4,566	4,587	4,597	4,615	4,664	4,865	4,944	5,055	5,163	5,294	5,351	5,396	5,453	5,488	5,490	5,475	5,454	5,440		
16-17	1,858	1,865	1,844	1,867	1,900	1,877	1,858	1,848	1,752	1,820	1,906	1,882	1,913	2,002	2,100	2,095	2,099	2,150	2,189	2,201	2,196		
18-59Female, 64Male	46,236	46,147	46,078	46,143	46,209	46,277	46,400	46,415	46,432	46,394	46,242	46,195	46,143	45,985	45,872	45,803	45,614	45,458	45,388	45,392	45,301		
60/65-74	11,995	12,390	12,743	12,937	13,163	13,391	13,555	13,656	13,748	13,851	13,985	13,945	13,929	14,130	14,332	14,577	14,948	15,212	15,489	15,702	15,972		
75-84	5,494	5,604	5,800	5,985	6,129	6,272	6,414	6,718	7,006	7,299	7,600	8,073	8,398	8,631	8,838	9,016	9,173	9,285	9,301	9,321	9,362		
$85+$	2,411	2,499	2,571	2,647	2,724	2,818	2,920	2,983	3,083	3,187	3,295	3,425	3,602	3,774	3,920	4,071	4,225	4,461	4,708	4,954	5,204		
Total	82,798	83,481	84,187	84,886	85,572	86,261	86,934	87,588	88,237	88,878	89,514	90,136	90,721	91,287	91,834	92,356	92,841	93,305	93,756	94,192	94,603	11,805	0
Households																							(1)
Number of Households	36,004	36,404	36,785	37,199	37,602	38,032	38,406	38,781	39,139	39,494	39,859	40,182	40,523	40,874	41,206	41,552	41,875	42,153	42,477	42,771	43,056	7,052	(1)
Change over previous year	+398	+400	+381	+414	+403	+431	+373	+375	+358	+355	+365	+323	+341	+351	+332	+347	+323	+278	+323	+294	+285		
Number of supply units	37,022	37,433	37,826	38,251	38,665	39,108	39,492	39,878	40,246	40,611	40,986	41,318	41,668	42,030	42,371	42,727	43,059	43,345	43,678	43,980	44,273	7,251	O
Change over previous year	+409	+412	+392	+425	+414	+443	+384	+386	+368	+365	+375	+332	+350	+361	+341	+357	+332	+286	+332	+302	+293		-
Labour Force																							
Number of Labour Force	42,458	42,497	42,554	42,645	42,725	42,806	42,833	42,826	42,905	42,900	42,870	42,807	42,788	42,772	42,755	42,724	42,644	42,631	42,629	42,667	42,660	202	
Change over previous year	+131	+39	+58	+90	+80	+81	+27	-7	+78	-5	-30	-63	-18	-17	-17	-31	-80	-13	-2	+38	-6		
Number of supply units	34,366	34,397	34,480	34,590	34,691	34,794	34,852	34,883	34,984	35,017	35,029	35,014	35,035	35,022	35,008	34,982	34,917	34,906	34,905	34,936	34,930	565	
Change over previous year	+142	+32	+83	+110	+102	+102	+59	+31	+101	+33	+12	-15	+21	-14	-14	-25	-65	-11	-2	+31	-5		

Page 331

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_inplscenario_ONS2010 zero international mig.xls

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM\1. POPGROUP v3.1 DF Compatible\Model RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_out\|FlatComp_ONS2010 zero international mig.xls	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTUKONS2010.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 332

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>

No migration file was specified for In-migration from Overseas (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to Overseas (optional)
This migration stream was set to zero

Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 333
ıersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Components of Population Change						Chet, Glouc, Tewkes														
Year beginning July 1st .																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	2,128	2,169	2,169	2,160	2,153	2,148	2,135	2,125	2,122	2,116	2,107	2,096	2,083	2,069	2,055	2,044	2,039	2,037	2,038	2,041
Female	2,027	2,066	2,066	2,057	2,050	2,045	2,033	2,024	2,021	2,015	2,007	1,996	1,984	1,971	1,958	1,947	1,942	1,940	1,941	1,944
All Births	4,155	4,235	4,235	4,217	4,203	4,193	4,168	4,149	4,142	4,131	4,114	4,091	4,066	4,040	4,013	3,991	3,980	3,978	3,979	3,985
TFR	2.11	2.14	2.13	2.11	2.10	2.08	2.06	2.05	2.04	2.04	2.03	2.02	2.02	2.01	2.00	1.99	1.99	1.99	1.99	2.00
Births input																				
Deaths																				
Male	1,345	1,330	1,349	1,361	1,355	1,362	1,368	1,379	1,391	1,400	1,415	1,428	1,447	1,464	1,484	1,505	1,528	1,551	1,572	1,597
Female	1,464	1,451	1,446	1,444	1,438	1,429	1,424	1,421	1,420	1,419	1,423	1,430	1,437	1,445	1,455	1,471	1,486	1,504	1,523	1,547
All deaths	2,809	2,781	2,794	2,805	2,793	2,791	2,791	2,800	2,811	2,820	2,838	2,858	2,884	2,908	2,939	2,975	3,014	3,055	3,095	3,144
SMR: males	93.3	89.9	88.6	87.0	84.4	82.5	80.6	79.0	77.5	75.8	74.3	72.9	71.7	70.4	69.2	68.1	67.1	66.2	65.2	64.4
SMR: females	93.7	91.2	89.3	87.6	85.8	83.8	82.1	80.4	78.8	77.2	75.7	74.3	73.0	71.6	70.3	69.2	68.1	67.0	66.0	65.2
SMR: male \& female	93.5	90.5	89.0	87.3	85.1	83.2	81.3	79.7	78.2	76.5	75.0	73.6	72.3	71.0	69.7	68.6	67.6	66.6	65.6	64.8
Expectation of life	81.5	81.7	81.8	82.0	82.2	82.3	82.5	82.6	82.7	82.9	83.0	83.1	83.2	83.3	83.4	83.5	83.6	83.7	83.8	83.9
Deaths input																				
In-migration from the UK																				
Male	9,051	9,104	9,154	9,196	9,232	9,257	9,269	9,276	9,275	9,274	9,288	9,307	9,327	9,354	9,396	9,442	9,482	9,528	9,580	9,636
Female	9,855	9,896	9,932	9,961	9,993	10,007	10,008	10,004	9,989	9,977	9,986	10,009	10,032	10,063	10,116	10,179	10,233	10,298	10,370	10,444
All	18,905	19,000	19,086	19,156	19,225	19,264	19,277	19,280	19,264	19,251	19,273	19,316	19,359	19,417	19,512	19,621	19,715	19,826	19,949	20,080
SMigR: males	53.8	53.8	53.7	53.7	53.7	53.7	53.6	53.6	53.5	53.5	53.5	53.5	53.6	53.6	53.6	53.6	53.6	53.5	53.5	53.5
SMigR: females	58.2	58.1	58.0	58.0	58.1	58.2	58.2	58.2	58.1	58.1	58.1	58.2	58.3	58.3	58.3	58.3	58.2	58.2	58.2	58.2
Migrants input																				
Out-migration to the UK																				
Male	8,518	8,577	8,656	8,708	8,743	8,784	8,805	8,816	8,826	8,822	8,833	8,856	8,869	8,890	8,931	8,974	9,016	9,055	9,104	9,163
Female	9,343	9,435	9,516	9,552	9,591	9,597	9,599	9,599	9,594	9,568	9,579	9,587	9,590	9,607	9,665	9,743	9,797	9,870	9,942	10,019
All	17,861	18,011	18,171	18,260	18,334	18,381	18,405	18,415	18,420	18,391	18,412	18,443	18,459	18,497	18,596	18,717	18,814	18,925	19,047	19,182
SMigR: males	50.6	50.7	50.8	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	50.9	51.0	51.0	50.9	50.9	50.9	50.8
SMigR: females	55.1	55.3	55.6	55.6	55.8	55.8	55.8	55.8	55.8	55.7	55.8	55.8	55.7	55.7	55.7	55.8	55.7	55.8	55.8	55.8
In-migration from Overseas																				
Male	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
All	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SMigR: males																				
SMigR: females																				
Migrants input																				
Out-migration to Overseas																				
Male	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
All	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0

SMigR: males
SMigR: females
Migrants input

$\underset{+}{\text { ั. }}$

$\stackrel{0}{\circ} \stackrel{+}{\stackrel{+}{\circ} \stackrel{0}{\circ} \stackrel{\circ}{+}}$

$\stackrel{\leftrightarrow}{\circ}$

$\stackrel{\infty}{\infty}$

Summary of Population estimates/forecasts
Summary of population change
Net migration
Migration - Net Flows

Natural change
Net migration
Net change
Net migratio
Net change

Page 336

Migration - Net Flows																								
UK	+275	+186	+142	+91	+91	+109	+130	+148	+152	+153	+181	+199	+242	+279	+307	+321	+341	+350	+351	+357	+366		+4,496	
Overseas	0	0	-	0	0	0	0	0	0	-	0	0	0	0	0	0	-	0	0	0	-		0	
Summary of population																								
Natural change	+358	+409	+442	+443	+438	+419	+416	+411	+405	+400	+394	+384	+373	+359	+344	+327	+309	+294	+279	+265	+249		+7,359	
Net migration	+275	+186	+142	+91	+91	+109	+130	+148	+152	+153	+181	+199	+242	+279	+307	+321	+341	+350	+351	+357	+366		+4,496	
Net change	+633	+595	+585	+534	+529	+528	+547	+559	+558	+553	+575	+583	+615	+638	+651	$+648$	+650	$+644$	+629	+622	+615		+11,855	
Summary of Pop	tion es	imate	/forec	asts																				
	Population	at mid-ye																						
	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	6,301	6,515	6,642	6,724	6,820	6,876	6,921	6,910	6,870	6,824	6,783	6,751	6,720	6,694	6,667	6,634	6,599	6,562	6,528	6,501	6,480	6,468		
5-10	6,874	6,792	6,828	7,078	7,176	7,340	7,517	7,775	7,913	7,989	8,074	8,117	8,159	8,141	${ }_{8} \mathbf{7}, 98$	8,052	8.010	7,975	7,939	7,907	7.873	7.835		
11-15	6,918	6,666	6,557	6,294	6,257	6,257	6,210	6,110	6,318	6,434	6,578	6.770	6,993	7,117	7,191	7,290	7,350	7,405	7,397	7,359	7,313	7.273		
16-17	3,136	3,131	3,070	2,949	2,860	2,694	2,653	2,717	2,576	2,561	2,675	2,619	2,568	2,685	2,912	2,963	2,970	2,993	3,043	3,120	3,141	3,133		
18-59Female, 64Male	66,786	67,250	67,381	67,644	67,636	67,748	67,817	67,734	67,747	67,717	67,520	67,448	67,314	67,160	66,943	66,835	66,915	66,931	66,989	67,051	67,144	67,254		
60/65-74	12,701	12,880	13,230	13,501	13,808	13,997	14,174	14,395	14,476	14,653	14,829	14,980	14,977	15,050	15,253	15,573	15,839	16,075	16,389	16,605	16,909	17,215		
75-84	6,976	6,952	6,981	7,046	7,188	7,268	7,338	7,452	7,668	7,892	8,064	8,292	8,698	9,083	9,344	9,551	9,721	9,940	9,995	10,151	10,257	10,303		
$85+$	3,530	3,669	3,761	3,800	3.824	3,917	3,996	4.079	4.163	4.218	4.318	4.440	4.570	4.684	4.845	5,005	5,147	5,320	5,563	5,780	5.978	6,230		
Total	113,222	113,855	114,450	115,035	115,569	116,098	116,626	117,172	117,731	118,289	118,842	119,417	120,000	120,615	121,252	121,903	122,551	123,201	123,845	124,474	125,096	125,710	${ }^{11,855}$	
Households																								0
Number of Households	50,358	50,837	51,289	51,715	52,115	52,475	52,843	53,325	53,779	54,208	54,656	55,065	55,442	55,836	56,215	56,600	57,023	57,428	57,913	58,353	58,789	59,169	8,332)
Change over previous year		+479	+452	+426	+399	+360	+368	+481	+454	+429	+447	+409	+377	+394	+379	+385	+423	+405	+485	+440	+436	+381		Q
Number of supply units	52,786	53,289	53,762	54,209	54,627	55,005	55,391	55,896	56,372	56,822	57,291	57,720	58,115	58,528	58,925	59,329	59,773	60,197	60,706	61,166	61,623	62,022	8,734	
Change over previous year		+502	${ }^{+473}$	+447	+419	+378	+386	+505	+476	+450	+469	+429	+395	${ }^{+413}$	+397	+404	+443	+425	+509	+461	+457	+399		
Labour Force																								
Number of Labour Force	62,341	62,658	62,889	63,041	63,068	63,152	63,225	63,173	63,235	63,184	63,080	62,998	62,910	62,956	62,960	62,981	63,002	63,114	63,281	63,418	63,549	63,740	1,083	
Change over previous year		+317	+232	+152	+27	+84	+73	-52	+62	-51	-104	-82	-87	+46	+4	+21	+21	+112	+167	+138	+130	+192		
Number of supply units	54,578	55,269	55,473	55,666	55,750	55,883	56,008	56,021	56,196	56,270	56,296	56,341	56,382	56,542	56,664	56,802	56,939	57,040	57,191	57,316	57,434	57,607	2,338	
Change over previous year		+691	+204	+193	+83	+134	+125	+14	+174	+74	+26	${ }^{+46}$	+40	+160	+123	+137	+138	+101	+151	+124	+118	+173		

Page 338

人
華

Tewkesbury
®

Components of Population Change
字导禁呙。

둔

In－migration from Overseas
Male
Female
All
SMigR：males
SMigR：females
Migrants input
Out－migration to Overseas
Male
Female
SMigR：males
SMigR：females
Migrants input

Page 342

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
Compatible\Model Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury
JCS_inplscenario_ONS2010 zero international mig LOW UNEMP.xls
Tick to save as new flat file

Produce flat file Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		<< Append to (blank if not to be appended) << Save flat file with this name (may be blank if to be appended to an existing file)
	G:IHEaDROOM\1. POPGROUP v3.1 DF Compatible\Model Runs\CardifflCGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_ONS2010 zero international mig LOW UNEMP.xls	

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the Mig_OUTUKONS2010.xIs workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 343

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
No migration file was specified for In-migration from Overseas (optional)
This migration stream was set to zero
No migration file was specified for Out-migration to Overseas (optional)
This migration stream was set to zero
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 344

/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

咢							早蒵
～ั					－		虫葛
～ั๊					\％		草等
へิ̃							旁蒵
\％		\％					蚿䓁
～ัّ						$\stackrel{\text { Nic }}{\sim}$	早茧
～							茧葛
冗ั๊							旁蒵
～ี				¢			喿等
ลั๊							等萃
®ั				Nome			虫葛
$\stackrel{\circ}{\sim}$							罩䓁
$\stackrel{\infty}{\sim}$						※	早草
今	$\stackrel{\text { \％}}{\sim}$						等蓠
$\stackrel{\circ}{\square}$	N						等蓠
$\stackrel{\square}{2}$							罩䓁
$\stackrel{\text { 寺 }}{\sim}$							早草
$\stackrel{\stackrel{9}{4}}{ }$							号茁
${ }^{\text {N }}$							等蓠
－					Na	\％	虫葛

Page 346

Page 347

Page 349

					\％
			:		
幸声哭			\mathfrak{y}		
罂兼草			\mathfrak{l}		
嵒离蓠			㗊		
			:		
旁离旁			驫		
寺寺臨			$: \frac{\underset{\sim}{z}}{\substack{\tilde{z}}}$		
			合		
$\underset{\substack{\text { a }}}{\text { ¢ }}$			0		
学离芧			噪		
予变草			菏		
			筬		
－¢			耪		
芧兼䓵					
予离草	$\stackrel{y}{0}$				
品寺喜					

Summary of pop																						
Natural change	+797	+865	+859	+843	+848	+850	+845	+834	+820	+812	+798	+780	+760	+742	+719	+699	+680	+673	+669	+664		+15,555
Net migration	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430	+430		+8,600
Net change	+1,227	+1,295	+1,289	+1,273	+1,278	+1,280	+1,275	+1,264	+1,250	+1,242	+1,228	+1,210	+1,190	+1,172	+1,149	+1,129	+1,110	+1,103	+1,099	+1,094		+24,155
Summary of Population estimates/forecasts																						
Population at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0.4	8,493	8,755	8,876	9,024	9,136	9,252	9,291	9,275	9,254	9,229	9,205	9,174	9,136	9,093	9,051	9,003	8,954	8,912	8,886	8,881	8,900	
5-10	8,404	8,632	9,116	9,434	9,769	10,055	10,398	10,713	${ }^{10,833}$	10,976	${ }^{11,081}$	11,198	11,235	11,213	11,184	11,156	11,130	11,093	${ }^{11,049}$	11,001	10,951	
11-15	7,145	7.048	6,554	6,859	6,338	6,940	7,077	7,357	7.693	7.989	8,280	8,543	8.802	8,921	9,069	9,180	9,294	9,334	9,319	9,300	9,278	
16-17	2,945	2,899	2,946	2,920	2,894	2.843	2,735	2,653	2,726	2.873	2,919	2.969	3,064	3,336	3,499	3,498	3.514	3,577	3,707	3,760	3,752	
18-59Female, 64Male	70,919	71,344	71,779	72,201	72,699	73,166	73,606	${ }^{73,891}$	74,081	74,159	74,416	${ }^{74,647}$	74,832	74,914	75,041	75,281	75,512	75,865	76,150	76,478	76,937	
60/65-74	12.648	12,994	13,253	13,571	13,832	14,073	14,289	14,484	14,768	15,096	15,387	15,478	15,702	16,077	16,551	17,123	17,667	18,131	18,592	19,055	19,426	
75.84	6,246	6,286	6,341	6,364	6,402	6.422	6.562	6,782	6,962	7,164	7.344	7,740	8,061	8,363	8,581	8.778	8.910	8,954	9,061	9,190	9,327	
$85+$	2.613	2.682	2.771	2.851	2.927	3,026	3.098	3,177	3.277	3,358	3,453	3,565	3.692	3,795	3,908	4.014	4.181	4.406	4.611	4.810	4,997	
Total	119,413	120,640	121,936	123,224	124,498	125,776	127,056	128,331	129,995	130,844	132,086	133,314	134,523	135,713	136,884	138,034	139,162	140,272	141,375	142,474	143,568	24,155
Households																						
Number of Households	51,383	52,045	52,730	53,377	54,010	54,685	55,367	56,043	56.716	57,350	57,999	58,632	59,274	59,941	60,582	61,224	61,860	62,568	63,253	63,926	64,574	13,191
Change over previous year	+669	+662	+685	+648	+633	+675	+682	+676	+673	+634	+649	+633	+642	+668	+641	+641	+636	+708	+685	+673	+648	
Number of supply units	53,247	53,933	54,642	55,313	55,969	56,668	57,375	58,075	58,773	59,430	60,102	60,758	61,423	62,115	62,780	63.444	64,104	64,838	6.547	66,245	66,916	13.669
Change over previous year	+693	+686	+710	+671	+656	+699	+707	+700	$+698$	+657	+672	+656	+665	+692	+664	+665	+659	+734	+799	$+698$	+671	
Labour Force																						
Number of Labour Force	64,618	65,079	65,497	65,907	66,262	66,641	66,949	67,315	67,635	67,847	68,054	68,271	68,630	68,906	69,173	69,444	69,788	70,216	70,596	70,998	71,439	6,821
Change over revious year	+577	+461	+418	+410	+355	+379	+308	+366	+320	+212	+207	+218	+358	+276	+267	+271	+344	+428	+380	+402	+441	
Number of supply units	64,618	65,079	65,567	66,049	66,476	66,928	67,309	67,74	68,144	68,431	68,712	69,006	69,442	69,795	70,065	70,340	70,688	71,122	71,507	71,914	72,361	7,743
Change over previous year	+1,197	${ }_{+461}$	${ }_{+488}$	$\stackrel{+882}{ }$	$\stackrel{+427}{ }$	${ }_{+452}$	+381	+440	$\stackrel{+395}{ }$	${ }_{+286}$	$\stackrel{+82}{ }$	$\stackrel{+293}{ }$	$\stackrel{+436}{ }$	+353	+270	+275	${ }_{+348}$	$+433$	${ }_{+385}$	$\stackrel{+07}{ }$	$+144$	

Page 352

Page 353

Page 354

This file was produced using the scenario file G:IHEaDROOM\1. POPGROUP v3.1 DF
CompatiblelModel RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_inplscenario_PAST
TREND MIGRATION.xIs
Tick to save as new flat file

Produce flat file Clicking the button will copy all data from this components file onto a single sheet in another workbook (for pivots, etc)		<< Append to (blank if not to be appended) << Save flat file with this name (may be blank if to be appended to an existing file)
	G:IHEaDROOM11. POPGROUP v3.1 DF Compatible\Model Runs\CGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_PAST TREND MIGRATION.xls	

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 355

When running scenarios using alternative migration, change the counts of migration, or remove them and change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply2.xls workbook, which was last updated on 11/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 356

/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Components of Population Change Chet, Glouc, Tewkes																				
	ing July																		2029	
Births			2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	${ }^{2023}$	${ }^{2024}$	2025	2026	2027	2028		2030
Male	2,122	2,159	2,155	2,140	2,132	2,123	2.116	2,108	2,103	2,099	2,092	2,082	2,072	2,063	2,051	2.038	2.031	2,031	2,033	2,038
Female	2.021	2.056	2.052	2.039	2.030	2.022	2.015	2.008	2.003	1.999	1.992	1.983	1.973	1.965	1.954	1.941	1.934	1,934	1,936	1,941
All Biths	4,143	4.216	4,207	4,179	4,162	4,145	4,132	4,115	4,106	4,098	4,084	4,066	4,045	4,028	4,005	3,979	3,964	3.966	3,969	3,978
Deaths																				
Male	1,345	${ }^{1,332}$	1,352	1.366	1.362	1.370	${ }_{1,378}$	1,330	1.404	1.414	1,430	1.444	${ }^{1,464}$	1.482	1,504	1.526	1.552	1,576	1.599	1.626
Female	1,465	1,453	1,450	1,450	1,447	1,439	1,435	1,433	1,433	1,432	1,437	1,445	1,453	1.461	1,473	1,489	1,507	1,526	1,547	1,573
All deaths	2,810	2,786	2,802	2.817	2,809	2,809	2.812	2,823	${ }_{2}^{2,386}$	2,847	2,867	2,889	2.917	2,944	2,977	3,015	3,059	3,102	3,46	3,198
SMR: males	93.3	89.9	88.6	87.2	84.6	82.8	80.9	79.4	78.0	76.3	74.9	${ }^{73.5}$	${ }^{72.3}$	71.1	70.0	69.0	68.1	67.2	66.3	65.6
SMR: females	93.7	91.1	89.3	87.5	85.7	83.7	81.9	80.2	78.6	76.9	${ }^{5} 5.3$	${ }^{73.9}$	${ }^{2} 2.5$	71.1	69.7	68.6	67.5	66.4	${ }^{65.3}$	64.5
SMR: male \& female	93.5	90.5	89.0	${ }^{87.3}$	85.1	83.2	81.4	79.8	${ }^{78.3}$	76.6	75.1	${ }^{73.7}$	${ }^{72.4}$	71.1	69.9	68.8	67.8	66.8	65.8	65.1
In-migration from the UK																				
Male	8.444	8.446	8,445	8.441	8,448	8.441	8,437	${ }^{8,451}$	8,467	${ }_{8,473}$	8,480	8,884	8.477	8.483	8,486	8,489	8,486	8.475	8,467	8,454
Female	9,184	9,182	9,183	9,187	9,180	9,187	9,191	9,177	9,161	9,155	9,148	9,144	9,151	9,45	${ }^{9,142}$	9,139	9,142	9,153	9,161	9,174
All	17,628	17,628	17,628	17,228	17,628	17,228	17,628	17,228	17,228	17,628	17,228	17,628	17,228	17,628	17,228	17,628	17,228	17,228	17,628	17,628
SMigR: males	50.2	49.9	49.5	49.2	49.1	48.8	48.6	48.6	48.6	48.6	48.6	48.5	${ }^{48.3}$	48.2	48.0	47.8	47.5	47.2	46.9	46.5
SMigR: females	54.2	53.7	53.4	53.1	52.8	52.7	52.7	52.5	52.4	52.4	52.3	52.2	52.2	52.0	51.7	51.3	50.8	50.4	50.0	49.6
Migrants input																				
Out-migration to the UK																				
Male	8.035	8.022	8.019	8.015	8.013	${ }^{8.013}$	8.011	${ }^{8.013}$	8.025	${ }_{8,032}$	8.035	8.048	8.045	8.056	8.062	8.065	8.065	8,046	8.038	8.024
Female	8.747	8,760	8,763	8.767	8,769	${ }^{8,769}$	${ }^{8,771}$	${ }^{8,769}$	${ }^{8,757}$	8,750	8,747	${ }^{8,734}$	${ }^{8,737}$	${ }^{8,726}$	8,720	8.717	8.717	8,736	8.744	8.758
All	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782	16,782
SMigR: males	47.8	47.4	47.0	46.7	46.5	46.3	46.2	46.1	46.1	46.1	46.0	46.0	45.8	45.8	45.6	45.4	45.2	44.8	44.5	44.2
SMigR: females	51.6	51.3	50.9	50.7	50.5	50.3	50.3	50.2	50.1	50.1	50.0	49.9	49.8	49.6	49.3	48.9	48.5	48.1	47.7	47.4
Migrants input																				
In-migration from Overseas																				
Male	1,402	${ }^{1,399}$	${ }^{1,397}$	${ }^{1,395}$	${ }^{1,394}$	${ }_{1}^{1,332}$	${ }^{1,391}$	${ }_{1}^{1.330}$	${ }^{1,330}$	${ }_{1}^{1,330}$	${ }^{1.330}$	${ }^{1,390}$	${ }^{1.388}$	${ }_{1}^{1,386}$	${ }_{1}^{1,384}$	${ }_{1}^{1,384}$	${ }^{1.383}$	${ }^{1,382}$	${ }^{1,380}$	${ }^{1,779}$
Female	1,226	1,229	1,231	${ }^{1,233}$	1,234	${ }^{1,236}$	${ }^{1,237}$	${ }^{1,238}$	${ }^{1,238}$	${ }^{1,238}$	1,238	${ }^{1,238}$	1,240	${ }^{1,242}$	${ }^{1,244}$	${ }^{1,244}$	${ }^{1,245}$	${ }^{1,246}$	${ }^{1,248}$	${ }^{1,249}$
All	2,628	2,628	2,628	2,628	2.628	2.628	2.628	2.628	2.628	2,628	2.628	2,628	2.628	2.628	${ }_{2}^{2,628}$	${ }_{2}^{2,628}$	${ }^{2,628}$	${ }^{2.628}$	${ }^{2,628}$	${ }^{2,1288}$
SMIigR: males	119.4	118.4	117.6	116.8	116.3	115.9	115.5	115.4	115.4	115.5	115.7	115.9	115.8	115.7	115.5	115.2	114.8	114.2	113.4	112.6
SMigR: females Migants input	108.0	107.2	106.5	106.0	105.5	105.3	105.3	105.3	105.3	105.4	105.7	105.9	106.3	106.7	106.9	100.8	106.5	106.1	105.4	104.7
Migrants input																				
Out-migration to Overseas																				
Male	1,269	1,265	1,262	1,259	1,256	1,254	1,254	1,252	1.251	1,251	1,251	1.251	1.250	1,249	1.248	${ }^{1,247}$	1.246	${ }^{1,244}$	${ }^{1,243}$	1.242
Female	1.017	${ }^{1,021}$	1.024	${ }^{1,027}$	1,030	1,032	1.032	1,034	1.035	${ }^{1.035}$	${ }^{1.035}$	1,035	1.036	1.037	${ }^{1,038}$	1.039	1.040	1.042	1,043	1.044
	2,286	2,286	2,286	${ }^{2,286}$	2,286	2.286	2.286	2.286	2,286	2,286	2.286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286	2,286

SMigR: males	108.1	107.1	106.2	105.4	104.8	104.4	104.1	103.9	103.9	104.0	104.1	104.3	104.3	104.3	104.2	103.9	103.4	102.8	102.2	101.4		
SMigR: females	89.6	89.0	88.6	88.3	88.1	87.9	87.8	87.9	88.0	88.2	88.4	88.6	88.8	89.1	89.2	89.2	88.9	88.7	88.1	87.5		
Migrants input																						
Migration - Net Flows																						
UK	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846	+846		+16,920
Overseas	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342	+342		+6,840
Summary of population change																						
Natural change	+1,332	+1,430	+1,405	+1,362	+1,354	+1,336	+1,319	+1,292	+1,270	+1,251	+1,216	+1,177	+1,128	+1,084	+1,028	+964	+906	+863	+823	+780		+23,321
Net migration	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188	+1,188		+23,760
Net change	+2,520	+2,618	+2,593	+2,550	+2,542	+2,524	+2,507	+2,480	+2,458	+2,439	+2,404	+2,365	+2,316	+2,272	+2,216	+2,152	+2,094	+2,051	+2,011	+1,968		+47,081
Summary of Population estimates/forecasts																						
Population at mid-year																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	
0-4	19,730	20,272	20,538	20,823	21,019	21,184	21,183	21,098	21,006	20,933	20,868	20,807	20,740	20,667	20,586	20,490	20,383	20,280	20,199	20,140	20,111	
5-10	20,607	20,866	21,717	22,345	22,927	23,566	24,333	24,941	25,196	25,449	25,628	25,772	25,756	25,650	25,541	25,452	25,366	25,279	25,184	25,088	24,981	
11-15	18,467	18,241	17,731	17,559	17,517	17,513	17,522	18,033	18,674	19,198	19,824	20,457	20,996	21,255	21,541	21,735	21,897	21,891	21,796	21,694	21,612	
16-17	7,972	7,891	7,798	7,682	7,490	7,378	7,314	7,042	6,980	7,294	7,330	7,303	7,556	8,169	8,492	8,514	8,588	8,744	8,968	9,034	8,993	0
18-59Female, 64Male	184,262	184,685	185,304	185,835	186,572	187,205	187,693	188,055	188,262	188,123	188,166	188,180	188,096	187,723	187,551	187,738	187,752	187,989	188,255	188,650	189,090	0
60/65-74	37,601	38,774	39,738	40,649	41,410	42,114	42,749	43,105	43,599	44,119	44,607	44,554	44,756	45,455	46,379	47,391	48,449	49,399	50,268	51,166	52,033	(1)
75-84	18,680	18,846	19,150	19,482	19,724	19,962	20,387	21,189	21,965	22,738	23,541	24,915	26,030	26,887	27,566	28,134	28,645	28,839	29,070	29,262	29,429	(1)
$85+$	8,707	8.973	9,188	9,384	9,64	9,928	10,191	10,419	10,679	10,964	11,295	11,673	12.097	12.536	12,959	13,377	13,903	14,656	15,38	16,10	16,859	
Total	316,026	318,547	321,165	323,758	326,308	328,850	331,374	333,881	336,361	338,819	341,258	343,662	346,027	348,342	350,615	352,831	354,983	357,077	359,128	361,139	363,107	$\begin{aligned} & 7^{081} \\ & \infty \end{aligned}$
Households																						
Number of Households	138,182	139,704	141,226	142,706	144,119	145,607	147,166	148,710	150,213	151,692	153,150	154,516	155,897	157,271	158,611	159,999	161,331	162,765	164,156	165,486	166,723	28,541
Change over previous year	+1,503	+1,522	+1,521	+1,480	+1,413	+1,488	+1,559	+1,544	+1,503	+1,479	+1,458	+1,366	+1,381	+1,374	+1,340	+1,388	+1,332	+1,434	+1,391	+1,330	+1,237	
Number of supply units	143,513	145,092	146,671	148,208	149,674	151,218	152,835	154,437	155,997	157,531	159,044	160,462	161,895	163,320	164,710	166,150	167,531	169,019	170,462	171,842	173,124	29,611
Change over previous year	+1,559	+1,579	+1,579	+1,537	+1,466	+1,544	+1,617	+1,602	+1,559	+1,535	+1,513	+1,417	+1,433	+1,425	+1,390	+1,440	+1,381	+1,488	+1,443	+1,380	+1,282	
Labour Force																						
Number of Labour Force	169,656	170,328	170,943	171,499	172,064	172,630	172,932	173,365	173,719	173,835	173,921	173,983	174,342	174,575	174,806	175,032	175,368	175,898	176,359	176,860	177,423	7,767
Change over previous year	+947	+673	+614	+556	+565	+567	+302	+432	+354	+115	+86	+63	+358	+233	+231	+226	+336	+530	+461	+501	+563	
Number of supply units	154,186	154,831	155,584	156,286	156,990	157,699	158,278	159,041	159,725	160,190	160,631	161,054	161,756	162,336	162,914	163,416	163,912	164,590	165,049	165,546	166,107	11,921
Change over previous year	+1,965	+644	+753	+702	+704	+709	+578	+763	+684	+465	+440	+423	+702	+580	+578	+502	+496	+678	+459	+497	+561	

Components of Population Change						Cheltenham														
Year beginning July 1 st																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	728	737	737	732	730	729	728	728	731	733	733	733	731	731	726	719	717	714	712	710
Female	694	702	702	698	696	694	693	693	696	698	698	698	696	696	691	685	682	680	678	676
All Biths	1,422	1.440	1,438	1,430	1,426	1,423	1,422	1,421	1,427	1,431	1,432	1,431	1,427	1,427	1,417	1,404	1,399	1,395	1,390	1,386
TFR	1.98	2.00	1.99	1.97	1.95	1.93	1.91	1.89	1.88	1.87	1.86	1.85	1.84	1.84	1.83	1.82	1.82	1.82	1.82	1.82
Births input																				
Deaths																				
Male	473	462	467	471	475	476	474	477	481	483	488	491	496	500	507	513	520	528	536	544
Female	551	548	544	535	536	531	526	521	519	517	516	517	517	519	521	524	528	534	539	547
All deaths	1,024	1,010	1,011	1,006	1,011	1,006	1,000	998	999	1,000	1,004	1,008	1,013	1,019	1,028	1,038	1,049	1,062	1,075	1,091
SMR: males	88.1	83.9	82.6	81.1	79.9	77.9	75.9	74.5	73.2	71.6	70.4	68.9	67.8	66.6	65.7	64.7	63.8	${ }^{63.1}$	62.3	61.6
SMR: females	89.4	87.7	85.8	83.0	82.0	80.2	78.3	76.5	75.0	73.3	71.7	70.4	69.0	67.8	66.5	65.3	64.2	63.3	62.3	61.6
SMR: male \& female	88.8	85.9	84.3	82.1	81.0	79.1	77.1	75.5	74.1	72.5	71.1	69.7	68.4	67.2	66.1	65.0	64.0	63.2	62.3	61.6
Expectation of life	81.9	82.2	82.3	82.5	82.6	82.8	83.0	83.1	83.2	83.3	83.4	83.5	83.7	83.8	83.9	84.0	84.1	84.2	84.2	84.3
Deaths input																				
In-migration from the UK																				
Male	3,407	3,404	3,398	3,389	3,386	3,367	3,358	3,362	3,368	3,361	3,358	3,354	3,346	3,345	3,344	3,342	3,336	3,326	3,315	3,308
Female	3,757	3,760	3,766	3,775	3,778	3,797	3,806	3,802	3,796	3,803	3,806	3,810	3,818	3,819	3,820	3,822	3,828	3,838	3,849	3,856
All	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164	7,164
SMigR: males	53.8	53.6	53.3	53.0	52.9	52.6	52.5	52.6	52.8	52.8	52.9	52.9	52.8	52.9	52.8	52.8	52.6	${ }_{52.3}$	52.0	51.7
SMigR: females	58.5	57.9	57.4	57.1	56.9	57.1	57.3	57.3	57.2	57.5	57.6	57.9	58.1	58.1	57.9	57.5	57.1	56.8	56.5	56.1
Migrants input			*	*	*		.	.	*		*	*	*		*	*	.			
Out-migration to the UK																				
Male	3,358	3,343	3,335	3,325	3,316	3,307	3,300	3,298	3,305	3,305	3,300	3,308	3,302	3,307	3,311	3,308	3,307	3,292	3,280	3,271
Female	3,706	3,721	3,729	3,739	3.748	3,757	3,764	3,766	3,759	3,759	3,764	3,756	3,762	3,757	3,753	3,756	3,757	3,772	3,784	3,793
All	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064	7,064
SMigR: males	53.0	52.6	52.3	52.0	51.8	51.6	51.6	51.6	51.8	52.0	52.0	52.1	52.1	52.3	52.3	52.2	52.1	51.8	51.4	51.1
SMigR: females	57.7	57.3	56.8	56.6	56.4	56.5	56.7	56.7	56.7	56.8	57.0	57.0	57.2	57.1	56.9	56.5	56.1	55.8	55.5	55.1
Migrants input	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*			
In-migration from Overseas																				
Male	765	762	759	757	756	754	751	749	748	748	747	747	745	742	740	739	738	${ }^{737}$	735	734
Female	678	681	684	686	687	689	692	694	695	695	696	696	698	701	703	704	705	706	708	709
All	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443	1,443
SMigR: males	169.8	168.6	167.7	167.1	166.9	166.8	166.8	167.0	167.6	168.4	169.3	170.1	170.5	170.9	171.1	171.2	171.2	170.9	170.2	169.3
SMigR: females	159.7	158.3	157.0	155.9	155.0	154.7	154.9	155.3	155.5	156.1	157.0	157.7	159.0	160.4	161.4	161.8	161.7	161.5	160.9	159.9
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Out-migration to Overseas																				
Male	741	738	734	731	729	726	725	723	722	721	720	720	719	718	716	715	714	712	711	710
Female	588	591	595	598	600	603	604	606	607	608	609	609	610	611	613	614	615	617	618	619
All	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329	1,329
SMigR: males	164.7	163.4	162.2	161.3	160.9	160.8	161.0	161.2	161.7	162.4	163.2	164.0	164.7	165.4	165.7	165.7	165.6	165.2	164.6	163.9
SMigR: females	138.3	137.3	136.5	135.9	135.5	135.2	135.2	135.6	135.9	136.5	137.3	137.9	138.8	139.8	140.6	141.1	141.1	141.1	140.4	139.6
Migrants input	-	*	*	-	*	-	*	*	*	*	.	-	-	*	.	.	*	-	*	

Page 361

Components of Population Change						Gloucester														
Year beginning July 1 st.																				
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	922	950	949	946	942	943	941	938	932	929	925	920	914	909	903	899	897	900	905	912
Female	878	905	904	901	898	898	896	893	888	885	881	876	871	865	860	856	854	857	862	869
All Biths	1,800	1,854	${ }_{1,853}$	1,847	1,840	1,841	${ }_{1,837}$	1.831	1.820	1,814	1.806	1,796	1,785	1,774	1,762	1,755	1,750	1,758	1,768	1,781
Births input																				
Deaths																				
Male	491	485	493	502	493	495	499	503	507	510	515	519	526	531	539	545	554	561	567	578
Female	512	504	501	501	499	495	493	494	493	492	494	497	500	501	505	511	517	524	531	540
All deaths	1,003	989	994	1,003	992	990	993	997	1,000	1,002	1,009	1,016	1,025	1,032	1,043	1,056	1,071	1,084	1,099	1,118
SMR: males	101.1	97.3	96.2	95.5	91.5	89.5	87.7	86.0	84.4	82.4	80.8	79.3	78.1	76.6	75.4	74.1	73.1	71.9	70.7	70.1
SMR: females	103.3	99.9	97.8	96.5	94.4	92.0	90.2	88.5	86.5	84.6	83.0	81.6	80.0	78.3	76.8	75.8	74.5	${ }^{73.3}$	${ }^{72.3}$	71.4
SMR: male \& female	102.2	98.6	97.0	96.0	92.9	90.7	88.9	87.2	85.4	83.5	81.9	80.4	79.0	77.4	76.1	74.9	73.8	72.6	71.5	70.7
Expectation of life	80.7	81.0	81.1	81.2	81.4	81.6	81.8	81.9	82.0	82.2	82.3	82.4	82.6	82.7	82.8	82.9	83.0	83.1	83.2	83.3
Deaths input																				
In-migration from the UK																				
Male	2,695	2,691	2,688	2,686	2,689	2,692	2,690	2,689	2,692	2,695	2,697	2,701	2,700	2,700	2,701	2,701	2,701	2,700	2,699	2,693
Female	2,814	2,818	2,821	2,823	2,820	2,817	2,819	2,820	2,817	2,814	2,812	2,808	2,809	2,809	2,808	2,808	2,808	2,809	2,810	2,816
All	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5,509	5.509	5,509	5,509
SMigR: males	41.1	40.7	40.3	40.0	39.8	39.6	39.4	39.2	39.2	39.1	39.0	38.9	38.7	38.5	38.3	37.9	37.6	37.3	37.0	36.5
SMigR: females	42.9	42.7	42.4	42.2	41.9	41.6	41.5	41.3	41.1	41.0	40.8	40.5	40.4	40.1	39.8	39.4	39.0	38.6	38.1	37.8
Migrants input	*		.	*	*	*		*	.	*			*		.		.			
Out-migration to the UK																				
Male	2,580	2,574	2,573	2,573	2,573	2,576	2,575	2,572	2,571	2,572	2,573	2,573	2,573	2,573	2,573	2,574	2,574	2,573	2,573	2,568
Female	2,656	2,662	2,663	2,663	2,663	2,660	2,661	2,664	2,665	2,664	2,663	2,663	2,663	2,663	2,663	2,662	2,662	2,663	2,663	2,668
All	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236	5,236
SMigR: males	39.4	38.9	38.6	38.3	38.1	37.9	37.7	37.5	${ }^{37.4}$	37.3	37.2	37.1	36.9	36.7	36.4	${ }^{36.1}$	35.8	35.5	35.2	34.9
SMigR: females	40.5	40.3	40.1	39.8	39.5	39.3	39.1	39.0	38.9	38.8	38.6	38.4	38.3	38.1	37.8	37.4	37.0	36.6	36.1	35.8
Migrants input	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	
In-migration from Overseas																				
Male	470	469	469	469	468	468	468	468	468	468	468	468	468	468	468	468	468	468	467	467
Female	401	402	402	402	403	403	403	403	403	403	403	403	403	403	403	403	403	403	404	404
All	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871	871
SMigR: males	102.6	101.6	100.8	100.1	99.5	99.1	98.8	98.5	98.4	98.4	98.3	98.3	98.2	98.0	97.6	97.0	96.2	95.4	94.4	93.4
SMigR: females	89.2	88.4	87.7	87.2	86.7	86.4	86.2	86.0	85.8	85.8	85.8	85.6	85.5	85.4	85.2	84.7	84.2	83.5	82.7	81.8
Migrants input		*	*	*	*	*	*	*	*	*	*	*	*	*			-	*		
Out-migration to Overseas																				
Male	394	394	393	393	393	392	392	393	393	393	393	393	393	393	393	393	393	393	392	392
Female	320	320	321	321	321	322	322	321	321	321	321	321	321	321	321	321	321	321	322	322
All	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714	714
SMigR: males	86.1	85.3	84.5	83.9	83.4	83.0	82.8	82.6	82.5	82.5	82.5	82.5	82.4	82.2	81.9	81.4	80.8	80.1	79.3	78.4
SMigR: females	71.1	70.5	70.0	69.6	69.3	69.0	68.8	68.6	68.5	68.4	68.4	68.3	68.2	68.1	67.9	67.5	67.1	66.5	65.9	65.2
Migrants input									*	*	*	*	-	*			*	*	*	*

Components of Population Change						Tewkesbury														
	ng July																			
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Births																				
Male	471	472	469	462	459	451	447	443	440	437	433	430	427	424	423	420	417	417	416	415
Female	449	450	447	440	437	430	426	422	419	416	413	409	406	404	403	400	398	397	396	396
All Biths	920	922	917	902	896	881	873	864	859	853	846	839	833	828	826	820	815	813	812	811
TFR	2.07	2.07	2.06	2.03	2.02	1.99	1.97	1.95	1.94	1.93	1.92	1.91	1.90	1.89	1.89	1.88	1.87	1.87	1.87	1.87
Births input																				
Deaths																				
Male	382	386	392	394	394	399	404	410	416	421	427	435	443	451	458	467	478	487	496	503
Female	402	401	406	413	412	413	416	418	421	423	428	431	436	441	447	454	462	469	476	486
All deaths	784	787	797	807	806	812	820	828	837	844	855	866	879	892	905	921	939	956	972	989
SMR: males	91.0	89.0	87.6	${ }^{85.3}$	82.7	81.2	79.6	78.2	76.6	75.1	73.7	72.5	71.4	70.4	69.2	68.4	67.7	66.9	66.2	65.3
SMR: females	88.9	86.1	84.7	83.9	81.3	79.6	78.0	76.5	75.0	${ }^{73.3}$	72.0	70.3	69.2	67.8	66.6	65.4	64.3	63.1	62.1	61.3
SMR: male \& female	89.9	87.5	86.1	84.6	82.0	80.4	78.8	77.3	75.8	74.2	72.8	71.4	70.3	69.1	67.9	66.9	66.0	65.0	64.1	63.3
Expectation of life	81.7	81.9	82.0	82.2	82.4	82.5	82.6	82.8	82.9	83.0	83.1	83.2	83.4	83.5	83.6	83.7	83.8	83.9	83.9	84.0
Deaths input																				
In-migration from the UK																				
Male	2,343	2,351	2,358	2,366	2,374	2,382	2,390	2,400	2,407	2,417	2,425	2,429	2,431	2,439	2,441	2,445	2,448	2,449	2,454	2,453
Female	2,612	2,604	2,597	2,589	2,581	2,573	2,565	2,555	2,548	2,538	2,530	2,526	2,524	2,516	2,514	2,510	2,507	2,506	2,501	2,502
All	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955	4,955
SMigR: males	59.4	59.1	58.8	58.6	58.4	58.2	58.0	57.9	57.7	57.7	57.7	57.5	57.3	57.2	57.0	56.8	56.6	${ }_{56} 6$	56.1	55.8
SMigR: females	65.7	65.3	65.0	64.8	64.5	64.3	64.0	63.8	63.7	63.4	63.2	63.1	63.0	62.7	62.4	61.9	61.4	61.1	60.6	60.2
Migrants input			*					*	*	*		*	*			*				
Out-migration to the UK																				
Male	2,097	2,105	2,111	2,117	2,123	2,130	2,136	2,143	2,149	2,156	2,162	2,167	2,170	2,176	2,178	2,182	2,184	2,182	2,185	2,184
Female	2,385	2,377	2,371	2,365	2,359	2,352	2,346	2,339	2,333	2,326	2,320	2,315	2,312	2,306	2,304	2,300	2,298	2,300	2,297	2,298
All	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482	4,482
SMigR: males	53.1	52.9	52.7	52.5	52.3	52.0	51.9	51.7	51.5	51.5	51.5	51.3	51.2	51.1	50.9	50.7	50.5	50.2	50.0	49.7
SMigR: females	60.0	59.6	59.4	59.2	59.0	58.8	58.6	58.4	58.3	58.1	58.0	57.8	57.7	57.4	57.1	56.7	56.3	56.0	55.6	55.3
Migrants input	*		*	*	*		*	*								*				
In-migration from Overseas																				
Male	167	168	169	170	170	171	171	172	173	174	175	175	175	176	177	177	177	178	178	178
Female	147	146	145	144	144	143	143	142	141	140	139	139	139	138	137	137	137	136	136	136
All	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314	314
SMigR: males	63.0	62.7	62.5	62.1	61.8	61.6	61.4	61.3	61.3	61.4	61.5	61.5	61.5	61.6	61.7	61.7	61.6	61.5	61.3	61.1
SMigR: females	56.2	55.8	55.5	55.2	55.0	54.8	54.6	54.4	54.2	54.1	54.0	54.1	54.2	54.2	54.0	53.9	53.7	${ }^{53.6}$	53.3	53.1
Migrants input	*	*	*	*	*	*	*	*	*	*	-	-	*		*	*	*		*	
Out-migration to Overseas																				
Male	133	134	134	135	135	136	136	136	137	137	138	138	138	139	139	139	139	140	140	140
Female	110	109	109	108	108	107	107	107	106	106	105	105	105	104	104	104	104	103	103	103
All	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243	243
SMigR: males	50.2	49.9	49.7	49.4	49.1	48.9	48.6	48.5	48.4	48.4	48.5	48.5	48.5	48.5	48.5	48.5	48.4	48.3	48.1	48.0
SMigR: females	42.0	41.8	41.6	41.3	41.2	41.1	41.0	41.0	40.9	40.9	40.9	40.9	40.9	41.0	40.9	40.8	40.7	40.6	40.5	40.3
Migrants input								*		*	*	*			*	*	*			

Migration - Net Flows																							
UK	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473	+473		+9,460	
Overseas	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71	+71		+1,420	
Summary of population																							
Natural change	+137	+135	+119	+95	+91	+69	+53	+36	+23	+9	-9	-26	-46	-65	-80	-101	-124	-142	-160	-178		-166	
Net migration	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544	+544		+10,880	
Net change	+681	+679	+663	+639	+635	+613	+597	+580	+567	+553	+535	+518	+498	+479	+464	+443	+420	+402	+384	+366		+10,714	
Summary of Popu	imate	/forec	asts																				
	t mid-y																						
	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031		
0-4	4,659	4,765	4,786	4,793	4,810	4,812	4,769	4,716	4,659	4,613	4,566	4,528	4,491	4,458	4,423	4,393	4,366	4,340	4,318	4,301	4,285		
5-10	5,452	5,445	5,560	5,750	5,788	5,896	6,004	6,107	6,121	6,113	6,123	6,108	6,054	5,987	5,920	5,862	5.802	5,751	5,703	5,658	5,617		
11-15	4,641	4,668	4,651	4.547	4,551	4,532	4,516	4,546	4,729	4,794	4,895	4,974	5,076	5,999	5.109	5,127	5,130	5,085	5,027	4,965	4,913		
16-17	1,764	1,717	1,690	1,707	1,735	1,711	1,703	1,689	1.587	1,642	1,699	1,674	1,709	1,792	1,874	1,859	1,844	1,881	1,911	1,908	1,888		
18-59Female, 64Male	46,309	46,228	46,113	46,132	46,162	46,201	46,305	46,327	46,359	46,344	46,223	46,196	46,183	46,100	46,074	46,085	45,998	45,939	45,950	46,029	46,011		
60/65-74	12,086	12,566	12,997	13,267	13,565	13,840	14,027	14,104	14,137	14,147	14,187	14,029	13,920	14,018	14,124	14,287	14,571	14,761	14,981	15,144	15,362		
75-84	5,485	5.591	5,783	5,965	6,109	6,271	6,451	${ }^{6,822}$	7,200	7.604	8.008	${ }^{8.595}$	9,008	9,310	9,569	9,774	9,935	10,024	9,984	${ }^{\text {9,933 }}$	9,911		
$85+$	2.420	2.517	2.597	2.678	2,758	2.849	2,950	3,011	3,110	3.212	3,321	3,453	3,633	3,809	3.960	4,130	4,314	4.599	4.907	5,227	5.544		
Total	${ }^{82,816}$	83,497	${ }^{84,176}$	${ }^{84,839}$	85,478	86,113	${ }^{86,726}$	${ }^{87,323}$	87,903	88,469	89,022	89,557	90,075	90,573	91,052	91,517	91,960	${ }^{92,379}$	92,781	93,165	93,531	10.714	0
Households																							Q10
Number of Households	36,027	36,448	36,827	37,186	37,528	37,924	38,363	38,806	39,209	39,590	39,980	40,330	40,692	41,046	41,377	41,741	42,116	42,444	42,803	43,122	43,433	7,406	(1)
Change over previous year	+421	+421	+379	+359	+342	+396	+439	+443	$+403$	+382	+390	+350	+362	+354	+331	+364	+375	+327	+359	+319	+311		
Number of supply units	37,046	37,479	37,868	38,238	38,590	38,997	39,448	39,903	40,317	40,710	41,110	41,471	41,843	42,207	42,547	42,922	43,307	43,644	44,013	44,341	44,662	7,616	
Change over previous year	+433	${ }^{+433}$	+390	+370	+352	+407	+451	+455	+414	+392	+401	+360	+372	+364	+340	+375	+385	+337	+369	+328	+320		-
Labour Force																							
Number of Labour Force	42,420	42,466	42,518	42,584	42,639	42,708	42,744	42,758	42,859	42,874	42,873	42,845	42,872	42,914	42,952	42,976	42,975	43,033	43,105	43,202	43,251	831	
Change over previous year	+93	+46	+52	+66	+55	+69	+36	+14	+100	+16	-2	-27	+27	+42	+38	+24	-1	+58	+72	+97	+49		
Number of supply units	34,335	34,372	34,451	34,540	34,621	34,714	34,816	34,901	35,056	35,142	35,214	35,265	35,360	35,468	35,573	35,593	35,592	35,640	35,700	35,780	35,821	1,486	
Change over previous year	+112	+37	+78	+90	+81	+93	+102	+85	+155	+86	+72	+51	+95	+108	+105	+20	-1	+48	+60	+80	+41		

Page 365

This file was produced using the scenario file G:IHEaDROOM11. POPGROUP v3.1 DF
CompatiblelModel RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_inplscenario_PAST
TREND MIGRATION LOW UNEMP.xls
Tick to save as new flat file

Produce flat file		<< Append to (blank if not to be appended)
Clicking the button will copy all data from this		
components file onto a single sheet in another workbook (for pivots, etc)	G:IHEaDROOM11. POPGROUP v3.1 DF Compatible\Model RunsICGT\Cheltenham, Gloucester, Tewkesbury JCS_outlFlatComp_PAST TREND MIGRATION LOW UNEMP.xIs	<< Save flat file with this name (may be blank if to be appended to an existing file)

Forecast after model set up to replicate ONS 2010 Based population projection data.

Comments from the PopBase2010.xls workbook, which was last updated on 26/02/2008 2010 Mid-Year Estimate of population taken from ONS sub-national 2010-based projections. Further details on ONS 2008 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Comments from the TFR FertONS2010.xls workbook, which was last updated on 09/09/2007
Area fertility schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area fertility differentials each year computed to approximately reproduce the area fertility projected by
ONS. The differential is the ratio of ONS projected births to the births predicted from the group schedule.
Area counts of births each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or mortality, remove the counts of births. The
schedule and the differentials will then apply ONS projected local fertility rates to the alternative
population each year. When running scenarios using alternative fertility, remove the counts and change the
schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the TFR MortONS2010.xls workbook, which was last updated on 09/09/2007
Area mortality schedules taken from ONS sub-national 2010-based projection, 2011-12.
Area mortality differentials each year computed to approximately reproduce the area mortality projected
by ONS. The differential is the ratio of ONS projected deaths to the deaths predicted from the group schedule.
Area counts of deaths each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration or fertility, remove the counts of deaths. The
schedule and the differentials will then apply ONS projected local mortality rates to the alternative population each year. When running scenarios using alternative mortality, remove the counts and change
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule is for 2011/12 taken from ONS England 2010-based projections.
Comments from the LT PAST TREND Mig_INUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PAST TREND Mig_OUTUKONS2010.xls workbook, which was last updated on 09/09/2007
Area internal out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of internal out-migrants each year taken from ONS sub-national 2010-based projection.

Page 366

When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>

Comments from the LT PT Mig_INOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas in-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas in-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the LT PT Mig_OUTOVONS2010.xls workbook, which was last updated on 09/09/2007
Area overseas out-migration schedules calculated from ONS sub-national 2010-based projection, 2011-12.
Area migration differentials each year computed to approximately reproduce the area migration
projected by ONS. The differential is the ratio of ONS projected migration to the migration predicted from
the group schedule.
Area counts of overseas out-migrants each year taken from ONS sub-national 2010-based projection.
When running scenarios using alternative migration, change the counts of migration, or remove them and
change the schedule / differentials to your alternative.
Further details on ONS 2010 based SNPP at:
http://www.ons.gov.uk/ons/rel/snpp/sub-national-population-projections/2010-based-projections/rpt-snpp-2010-based-methodogy-report.html
Source of standard schedule of rates:
Standard schedule of ASMigRs is from 2001 Census taken from <Standard_England_2010.xls>
Comments from the DFSupply.xls workbook, which was last updated on 04/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A single conversion ratio has been used.

Comments from the JOBS DFSupply.xls workbook, which was last updated on 18/05/2012
This workbook allows POPGROUP to convert between a derived forecast (e.g. households, labour force) and a supply forecast (e.g. dwellings, jobs). A single conv A labour force to dwellings conversion has been given with separate rates for unemployment and commuting.

Page 367
/ersion ratio (derived units)/(supply units) is the default, but separate components may be provided by the user, by selecting from the followins

Page 368

Page 369
［ Applications \＆Appeals
㤂 Climate Change \＆Sustainability
if Community Engagement
总：Daylight \＆Sunlight
角 Economics \＆Regeneration
영 E Environmental Assessment
Br Expert Evidence
－GIS \＆Graphics
IT Heritage
© Property Economics
Q Site Finding \＆Land Assembly
Ctrategy \＆Appraisal
TO Urban Design

Cardiff

02920435880

Leeds

01133971397
London
02078374477
Manchester
01618376130

Newcastle

01912615685
nlpplanning．com

[^0]: ${ }^{1}$ It is considered that the ONS 2010-based Sub National Population Projection Assessment figure of 28,500 dwellings is the most recently available data.

[^1]: ${ }^{1}$ This is the same modelling software that was also used by Gloucestershire County Council.

[^2]: ${ }^{2}$ The darker shade of green reflects domestic migration; the lighter shade of green reflects international migration.

[^3]: ${ }^{3}$ Source: ABI / BRES data

[^4]: ${ }^{4}$ The periods covered by these data sets are different because of variations in the way that domestic and international migration statistics are obtained and retained by ONS.

[^5]: Source: ONS Population Estimates Unit / ONS Migration Statistics Unit

[^6]: ${ }^{5}$ The darker shade of green reflects domestic migration; the lighter shade of green reflects international migration.

[^7]: Source: NLP Analysis of PopGroup Outputs

[^8]: ${ }^{6}$ The darker shade of green reflects domestic migration; the lighter shade of green reflects international migration.

[^9]: ${ }^{7}$ Experian and CE data differ in respect of the time period that they cover - CE provides figures for 1981 - 2031, whilst Experian forecasts employment between 1997 and 2031.

[^10]: ${ }^{8}$ The darker shade of green reflects domestic migration; the lighter shade of green reflects international migration.

[^11]: Source: ONS Mid Year Population Projections

[^12]: Source: NLP Analysis of PopGroup Outputs

[^13]: Source: NLP Analysis

[^14]: Source: NLP Analysis of PopGroup Outputs

[^15]: Out-migration to Overseas
 Male
 Male
 Female
 SMigR: males
 SMigR: females
 Migrants input

[^16]: Out－migration to Overseas
 Male
 Male
 Female
 SMigR：males
 SMigR：females
 Migrants input

[^17]: Out-migration to Overseas
 Male
 Male
 Female
 SMigR: males
 SMigR: females
 SMigrants input
 Mige

[^18]: Out－migration to Overseas
 Male
 Male
 Female
 SMigR：males
 SMigR：females
 Migrants input

[^19]: Out－migration to Overseas
 Male
 Male
 Female
 All
 SMigR：males
 SMigR：females
 Migrants input

[^20]: In-migration from Overseas
 Male
 Female
 All
 SMigR: males
 SMigR: females
 Migrants input
 Out-migration to Overseas
 Male
 Male
 Female
 All
 SMigR: males
 SMigR: females
 SMigR: females
 Migrants input

